18.已知函數(shù)$f(x)=cos(2x+\frac{π}{3})+{sin^2}x$,則f(x)最小正周期為π.

分析 利用三角恒等變換化簡函數(shù)f(x),求出它的最小正周期即可.

解答 解:函數(shù)$f(x)=cos(2x+\frac{π}{3})+{sin^2}x$
=cos2xcos$\frac{π}{3}$-sin2xsin$\frac{π}{3}$+$\frac{1-cos2x}{2}$
=-$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$,
∴f(x)的最小正周期為:
T=$\frac{2π}{2}$=π.
故答案為:π.

點評 本題主要考查了三角函數(shù)的周期性及其求法,余弦函數(shù)的圖象與性質,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

14.下列敘述不正確的是( 。
A.類比推理是由特殊到特殊的推理
B.歸納推理是由特殊到一般的推理
C.演繹推理是由一般到特殊的推理
D.合情推理和演繹推理所得的結論都是正確的

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,直三棱柱ABC-A1B1C1中,AC=AA1=2AB,且BC1⊥A1C
(1)求證:A1C⊥平面ABC1
(2)若D是A1C1的中點,在線段BB1上是否存在點E,使DE∥平面ABC1?若存在,指出點E的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知x,y滿足$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1,則x,y的取值范圍是-3≤x≤3,-2≤y≤2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在△ABC中,$\frac{2sinA-sinB}{sinC}$=$\frac{cosB}{cosC}$.
(1)求C的值;
(2)若cosA=$\frac{3}{5}$,求sinB的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知圓(x-a)2+y2=4與射線y=$\sqrt{3}$x(x≥0)沒有公共點,則實數(shù)α的取值范圍是{a|a<-2或a>$\frac{4}{3}\sqrt{3}\}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)f(x)是定義在(0,+∞)內的單調函數(shù),且對?x∈(0,+∞),f[f(x)-lnx]=e+1,給出下面四個命題:
①不等式f(x)>0恒成立
②函數(shù)f(x)存在唯一零點,且x0∈(0,1)
③方程f(x)=x有兩個根
④方程f(x)-f′(x)=e+1(其中e為自然對數(shù)的底數(shù))有唯一解x0,且x0∈(1,2)
其中正確的命題個數(shù)為( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+x+a,x<0}\\{-\frac{1}{x},x>0}\end{array}\right.$的圖象上存在不同的兩點A,B,使得曲線y=f(x)在這兩點處的切線重合,則實數(shù)a的取值范圍是( 。
A.(-∞,$\frac{1}{4}$)B.(2,+∞)C.(-2,$\frac{1}{4}$)D.(-∞,2)∪($\frac{1}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知過點(-1,-1)的直線與圓x2+y2-2x+6y+6=0有兩個公共點,則該直線的斜率的取值范圍為(-∞,0).

查看答案和解析>>

同步練習冊答案