A. | (-∞,$\frac{1}{4}$) | B. | (2,+∞) | C. | (-2,$\frac{1}{4}$) | D. | (-∞,2)∪($\frac{1}{4}$,+∞) |
分析 先根據(jù)導(dǎo)數(shù)的幾何意義寫出函數(shù)f(x)在點(diǎn)A、B處的切線方程,再利用兩直線重合的充要條件:斜率相等且縱截距相等,列出關(guān)系式,令$\frac{1}{{x}_{2}}$=t,則a=$\frac{{t}^{4}-2{t}^{2}-8t+1}{4}$,構(gòu)造函數(shù)g(t)═$\frac{{t}^{4}-2{t}^{2}-8t+1}{4}$,t∈(0,1),即可得出a的取值范圍.
解答 解:當(dāng)x<0時(shí),f(x)=x2+x+a的導(dǎo)數(shù)為f′(x)=2x+1;
當(dāng)x>0時(shí),f(x)=-$\frac{1}{x}$的導(dǎo)數(shù)為f′(x)=$\frac{1}{{x}^{2}}$,
設(shè)A(x1,f(x1)),B(x2,f(x2))為該函數(shù)圖象上的兩點(diǎn),且x1<x2,
當(dāng)x1<x2<0,或0<x1<x2時(shí),f′(x1)≠f′(x2),故x1<0<x2,
當(dāng)x1<0時(shí),函數(shù)f(x)在點(diǎn)A(x1,f(x1))處的切線方程為
y-(x12+x1+a)=(2x1+1)(x-x1);
當(dāng)x2>0時(shí),函數(shù)f(x)在點(diǎn)B(x2,f(x2))處的切線方程為y+$\frac{1}{{x}_{2}}$=$\frac{1}{{{x}_{2}}^{2}}$(x-x2).
兩直線重合的充要條件是$\frac{1}{{{x}_{2}}^{2}}$=2x1+1,-$\frac{2}{{x}_{2}}$=-x12+a,
且x1∈(-$\frac{1}{2}$,0)可得$\frac{1}{{x}_{2}}$∈(0,1),消去x1得:
-($\frac{\frac{1}{{{x}_{2}}^{2}}-1}{2}$)2+a=-$\frac{2}{{x}_{2}}$,令$\frac{1}{{x}_{2}}$=t,則a=$\frac{{t}^{4}-2{t}^{2}-8t+1}{4}$,
構(gòu)造函數(shù)g(t)═$\frac{{t}^{4}-2{t}^{2}-8t+1}{4}$,t∈(0,1),g′(t)=t3-t-2,
g′′(t)=3t2-1=0可得t=$\frac{\sqrt{3}}{3}$(負(fù)值舍去),所以g′(t)在(0,$\frac{\sqrt{3}}{3}$)單調(diào)遞減,
在($\frac{\sqrt{3}}{3}$,1)單調(diào)遞增,又g′(0)<0,g′(1)<0,所以g′(x)<0,
所以g(x)在(0,1)單調(diào)遞減,所以g(x)∈(-2,$\frac{1}{4}$),即a∈(-2,$\frac{1}{4}$),
故選C.
點(diǎn)評(píng) 本題主要考查了導(dǎo)數(shù)的幾何意義等基礎(chǔ)知識(shí),考查了推理論證能力、運(yùn)算能力、創(chuàng)新意識(shí),考查了函數(shù)與方程、分類與整合、轉(zhuǎn)化與化歸等思想方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2π | B. | 3π | C. | $\frac{10π}{3}$ | D. | $\frac{11π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 當(dāng)n>2時(shí),22n>n2 | B. | 當(dāng)n>3時(shí),2n>n2 | C. | 當(dāng)n>4時(shí),2n>n2 | D. | 當(dāng)n>5時(shí),2n>n2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2-$\sqrt{3}$xy+y2=1 | B. | x2-xy+y2=1 | C. | x2+y2=1 | D. | x2+xy+y2=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | P⊆Q | B. | P=Q | C. | Q⊆P | D. | P≠Q(mào) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\sqrt{2}$),(0,-$\sqrt{2}$) | B. | ($\sqrt{2}$,0),($-\sqrt{2}$,0) | C. | (0,2),(0,-2) | D. | (2,0),(-2,0) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com