(2011•朝陽區(qū)二模)如圖,一艘船上午8:00在A處測得燈塔S在它的北偏東30°處,之后它繼續(xù)沿正北方向勻速航行,上午8:30到達(dá)B處,此時(shí)又測得燈塔S在它的北偏東75°處,且與它相距4
2
n mile,則此船的航行速度是
16
16
n mile/h.
分析:在△ABS中,已知∠BAS=30°,∠ASB=45°,又已知三角形ABS中邊BS=4
2
,先求出邊AB的長,再利用物理知識(shí)解出.
解答:解:因?yàn)樵凇鰽BS中,已知∠BAS=30°,∠ASB=45°,且邊BS=4
2

利用正弦定理可得:
AB
sin45°
=
BS
sin30°

AB
2
2
=
4
2
1
2

∴AB=8,
又因?yàn)閺腁到S勻速航行時(shí)間為半個(gè)小時(shí),所以速度應(yīng)為:
8
1
2
=16
(mile/h).
故答案為:16
點(diǎn)評(píng):本題以實(shí)際問題為載體,考查正弦定理的運(yùn)用此,考查了學(xué)生的物理知識(shí)速度=
位移
時(shí)間
,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•朝陽區(qū)二模)已知全集U=R,集合A={x|2x>1},B={ x|
1
x-1
>0 }
,則A∩(CUB)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•朝陽區(qū)二模)設(shè)函數(shù)f(x)=lnx+(x-a)2,a∈R.
(Ⅰ)若a=0,求函數(shù)f(x)在[1,e]上的最小值;
(Ⅱ)若函數(shù)f(x)在[
12
,2]
上存在單調(diào)遞增區(qū)間,試求實(shí)數(shù)a的取值范圍;
(Ⅲ)求函數(shù)f(x)的極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•朝陽區(qū)二模)在長方形AA1B1B中,AB=2A1=4,C,C1分別是AB,A1B1的中點(diǎn)(如圖).將此長方形沿CC1對(duì)折,使平面AA1C1C⊥平面CC1B1B(如圖),已知D,E分別是A1B1,CC1的中點(diǎn).
(Ⅰ)求證:C1D∥平面A1BE;
(Ⅱ)求證:平面A1BE⊥平面AA1B1B;
(Ⅲ)求三棱錐C1-A1BE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•朝陽區(qū)二模)已知cosα=
3
5
,0<α<π,則tan(α+
π
4
)
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•朝陽區(qū)二模)已知函數(shù)f(x)=2sinx•sin(
π
2
+x)-2sin2x+1
(x∈R).
(Ⅰ)求函數(shù)f(x)的最小正周期及函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若f(
x0
2
)=
2
3
,x0∈(-
π
4
,
π
4
)
,求cos2x0的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案