分析 設(shè)ap,aq為等差數(shù)列{an}中的任意兩項(xiàng),依題意ak=ap+aq,利用等差數(shù)列的通項(xiàng)公式可得d=$\frac{9}{k+1-p-q}$.
由k,p,q均為正整數(shù),公差d∈N*,利用9的公約數(shù)即可得出.
解答 解:設(shè)ap,aq為等差數(shù)列{an}中的任意兩項(xiàng),依題意ak=ap+aq,
即2a1+(p+q-2)d=a1+(k-1)d,
∴d=$\frac{{a}_{1}}{k+1-p-q}$=$\frac{9}{k+1-p-q}$.
∵k,p,q均為正整數(shù),公差d∈N*,
∴k+1-p-q=1,3,9,
因此d的所有可能取值為1,3,9.
故答案為:1,3,9.
點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式、整除理論,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 5 | C. | 6 | D. | 11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x≤-1,或x≥2} | B. | {x|-1≤x<2} | C. | {x|-1≤x≤4} | D. | {x|x≤4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=x+1 | B. | y=2x | C. | y=2x | D. | y=2x-1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com