4.已知函數(shù)f(x)=xlnx-$\frac{a}{2}$x2-x+a(a∈R)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(Ⅰ)求a的取值范圍;
(Ⅱ)設(shè)兩個(gè)極值點(diǎn)分別為x1,x2,證明:x1•x2>e2

分析 (Ⅰ)由導(dǎo)數(shù)與極值的關(guān)系知可轉(zhuǎn)化為方程f′(x)=lnx-ax=0在(0,+∞)有兩個(gè)不同根;再轉(zhuǎn)化為函數(shù)y=lnx與函數(shù)y=ax的圖象在(0,+∞)上有兩個(gè)不同交點(diǎn),或轉(zhuǎn)化為函數(shù)g(x)=$\frac{lnx}{x}$與函數(shù)y=a的圖象在(0,+∞)上有兩個(gè)不同交點(diǎn);或轉(zhuǎn)化為g(x)=lnx-ax有兩個(gè)不同零點(diǎn),從而討論求解;
(Ⅱ)問題等價(jià)于ln$\frac{{x}_{1}}{{x}_{2}}$>$\frac{2{(x}_{1}{-x}_{2})}{{{x}_{1}+x}_{2}}$,令$\frac{x_1}{x_2}=t$,則t>1,$ln\frac{x_1}{x_2}>\frac{{2({{x_1}-{x_2}})}}{{{x_1}+{x_2}}}?lnt>\frac{{2({t-1})}}{t+1}$,設(shè)$g(t)=lnt-\frac{{2({t-1})}}{t+1},t>1$,根據(jù)函數(shù)的單調(diào)性證出結(jié)論即可.

解答 解:(Ⅰ)由題意知,函數(shù)f(x)的定義域?yàn)椋?,+∞),
方程f′(x)=0在(0,+∞)有兩個(gè)不同根;
即方程lnx-ax=0在(0,+∞)有兩個(gè)不同根;
(解法一)轉(zhuǎn)化為函數(shù)y=lnx與函數(shù)y=ax的圖象在(0,+∞)上有兩個(gè)不同交點(diǎn),
如右圖.
可見,若令過原點(diǎn)且切于函數(shù)y=lnx圖象的直線斜率為k,只須0<a<k.
令切點(diǎn)A(x0,lnx0),
故k=y′|x=x0=$\frac{1}{{x}_{0}}$,又k=$\frac{l{nx}_{0}}{{x}_{0}}$,
故 $\frac{1}{{x}_{0}}$=$\frac{l{nx}_{0}}{{x}_{0}}$,
解得,x0=e,
故k=$\frac{1}{e}$,
故0<a<$\frac{1}{e}$.
(解法二)轉(zhuǎn)化為函數(shù)g(x)=$\frac{lnx}{x}$與函數(shù)y=a的圖象在(0,+∞)上有兩個(gè)不同交點(diǎn).
又g′(x)=$\frac{1-lnx}{{x}^{2}}$,
即0<x<e時(shí),g′(x)>0,x>e時(shí),g′(x)<0,
故g(x)在(0,e)上單調(diào)增,在(e,+∞)上單調(diào)減.
故g(x)極大=g(e)=$\frac{1}{e}$;
又g(x)有且只有一個(gè)零點(diǎn)是1,且在x→0時(shí),g(x)→-∞,在在x→+∞時(shí),g(x)→0,
故g(x)的草圖如右圖,
可見,要想函數(shù)g(x)=$\frac{lnx}{x}$與函數(shù)y=a的圖象在(0,+∞)上有兩個(gè)不同交點(diǎn),
只須0<a<$\frac{1}{e}$.
(解法三)令g(x)=lnx-ax,從而轉(zhuǎn)化為函數(shù)g(x)有兩個(gè)不同零點(diǎn),
而g′(x)=$\frac{1}{x}$-ax=$\frac{1-ax}{x}$(x>0),
若a≤0,可見g′(x)>0在(0,+∞)上恒成立,所以g(x)在(0,+∞)單調(diào)增,
此時(shí)g(x)不可能有兩個(gè)不同零點(diǎn).
若a>0,在0<x<$\frac{1}{a}$時(shí),g′(x)>0,在x>$\frac{1}{a}$時(shí),g′(x)<0,
所以g(x)在(0,$\frac{1}{a}$)上單調(diào)增,在($\frac{1}{a}$,+∞)上單調(diào)減,從而g(x)極大=g($\frac{1}{a}$)=ln$\frac{1}{a}$-1,
又因?yàn)樵趚→0時(shí),g(x)→-∞,在在x→+∞時(shí),g(x)→-∞,
于是只須:g(x)極大>0,即ln$\frac{1}{a}$-1>0,所以0<a<$\frac{1}{e}$.
綜上所述,0<a<$\frac{1}{e}$.
(Ⅱ)由(Ⅰ)可知x1,x2分別是方程lnx-ax=0的兩個(gè)根,
即lnx1=ax1,lnx2=ax2,
設(shè)x1>x2,作差得ln$\frac{{x}_{1}}{{x}_{2}}$=a(x1-x2),即a=$\frac{ln\frac{{x}_{1}}{{x}_{2}}}{{{x}_{1}-x}_{2}}$
原不等式${x_1}•{x_2}>{e^2}$等價(jià)于ln$\frac{{x}_{1}}{{x}_{2}}$>$\frac{2{(x}_{1}{-x}_{2})}{{{x}_{1}+x}_{2}}$,
令$\frac{x_1}{x_2}=t$,則t>1,$ln\frac{x_1}{x_2}>\frac{{2({{x_1}-{x_2}})}}{{{x_1}+{x_2}}}?lnt>\frac{{2({t-1})}}{t+1}$,
設(shè)$g(t)=lnt-\frac{{2({t-1})}}{t+1},t>1$,$g'(t)=\frac{{{{({t-1})}^2}}}{{t{{({t+1})}^2}}}>0$,
∴函數(shù)g(t)在(1,+∞)上單調(diào)遞增,
∴g(t)>g(1)=0,
即不等式$lnt>\frac{{2({t-1})}}{t+1}$成立,
故所證不等式${x_1}•{x_2}>{e^2}$成立.

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的綜合應(yīng)用及分類討論,轉(zhuǎn)化思想,數(shù)形結(jié)合的思想方法的應(yīng)用,屬于綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.若(ax2+bx-16的展開式中x3項(xiàng)的系數(shù)為20,則a2+b2的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知集合A={x|x2-x-12<0},B={x|y=log2(x+4)},則A∩B=(  )
A.(-3,3)B.(-3,4)C.(0,3)D.(0,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.設(shè)等差數(shù)列{an}滿足:公差d∈N*,an∈N*,且{an}中任意兩項(xiàng)之和也是該數(shù)列中的一項(xiàng),若a1=9.則d的所有可能取值為1,3,9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.根據(jù)下面的要求,求S=12+22+…+1002值.
(Ⅰ)請(qǐng)畫出該程序的程序框圖;
(Ⅱ)請(qǐng)寫出該問題的程序(程序要與程序框圖對(duì)應(yīng)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在直角坐標(biāo)系xOy中,直線L的參數(shù)方程為$\left\{\begin{array}{l}{x=3-\frac{\sqrt{2}}{2}t}\\{y=\sqrt{5}+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為ρ=2$\sqrt{5}$sinθ,試判斷圓C與直線L的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知集合A={1,2,3,4},B={n|n=log2(3k-1),k∈A},則A∩B=( 。
A.{3}B.{1}C.{1,3}D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.一個(gè)質(zhì)點(diǎn)位于坐標(biāo)原點(diǎn)O處,此質(zhì)點(diǎn)每秒鐘只向左或向右移動(dòng)一個(gè)單位,向左和向右移動(dòng)的機(jī)會(huì)均等,則3秒后此質(zhì)點(diǎn)位于(1,0)處的概率為( 。
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{3}{8}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知全集U=R,集合A={x|0<log2x<2},B={y|y=x2+2},則A∩∁UB=( 。
A.(1,2)B.(1,4)C.[2,4)D.(0,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案