某中學(xué)共有學(xué)生人,其中高一年級人,高二年級人,高三年級人,現(xiàn)采用分層抽樣的方法,抽取人進(jìn)行體育達(dá)標(biāo)檢測,則抽取高二年級學(xué)生人數(shù)為 .

93

【解析】

試題分析:抽取高二年級學(xué)生人數(shù)為

考點(diǎn):統(tǒng)計(jì),抽樣的概念

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年福建省漳州市畢業(yè)班質(zhì)量檢查理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)根據(jù)新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》指出空氣質(zhì)量指數(shù)在,各類人群可正;顒(dòng).某市環(huán)保局在2014年對該市進(jìn)行為期一年的空氣質(zhì)量檢測,得到每天的空氣質(zhì)量指數(shù),從中隨機(jī)抽取50個(gè)作為樣本進(jìn)行分析報(bào)告,樣本數(shù)據(jù)分組區(qū)間為,,,,,由此得到樣本的空氣質(zhì)量指數(shù)頻率分布直方圖,如圖.

(1)求的值;

(2)根據(jù)樣本數(shù)據(jù),試估計(jì)這一年度的空氣質(zhì)量指數(shù)的平均值;

(3)用這50個(gè)樣本數(shù)據(jù)來估計(jì)全年的總體數(shù)據(jù),將頻率視為概率.如果空氣質(zhì)量指數(shù)不超過20,就認(rèn)定空氣質(zhì)量為“最優(yōu)等級”.從這一年的監(jiān)測數(shù)據(jù)中隨機(jī)抽取2天的數(shù)值,其中達(dá)到“最優(yōu)等級”的天數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年四川省德陽市四校高三聯(lián)合測試(3月)理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)如圖所示,在正方體ABCD—A1B1C1D1中,E是棱DD1的中點(diǎn).

(1)求直線BE和平面ABB1A1所成角的正弦值;

(2)在棱C1D1上是否存在一點(diǎn)F,使B1F∥平面A1BE?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年四川省德陽市四校高三聯(lián)合測試(3月)理科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知復(fù)數(shù),則 ( )

A.2 B.-2 C.2i D.-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省南通市高三第一次調(diào)研測試數(shù)學(xué)試卷(解析版) 題型:填空題

在平面直角坐標(biāo)系中,以直線為漸近線,且經(jīng)過拋物線焦點(diǎn)的雙曲線的方程是 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年廣東省珠海市高三上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題14分)

已知數(shù)列的前項(xiàng)和為,且,其中

(1)求數(shù)列的通項(xiàng)公式;

(2)若,數(shù)列的前項(xiàng)和為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年廣東省珠海市高三上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

已知正的邊長為,點(diǎn)是邊上一點(diǎn),且,則= .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年廣東省珠海市高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)

某同學(xué)用“五點(diǎn)法”畫函數(shù)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入的部分?jǐn)?shù)據(jù)如下表:

1

1

1

(1)求函數(shù)的解析式;

(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年湖南懷化市小學(xué)課改教育監(jiān)測高三上學(xué)期期考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)

在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),以為圓心的圓與直線相切.

(Ⅰ)求圓的方程;

(Ⅱ)若直線與圓交于,兩點(diǎn),在圓上是否存在一點(diǎn),使得,若存在,求出此時(shí)直線的斜率;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案