函數(shù)f(x)=
log
1
2
(2x-3)
的定義域是
 
考點(diǎn):函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)的解析式知,二次根式的被開方數(shù)大于或等于0,對數(shù)的真數(shù)大于0,列出不等式(組),求出x的取值范圍.
解答: 解:∵f(x)=
log
1
2
(2x-3)

log
1
2
(2x-3)≥0,
∴0<2x-3≤1;
∴3<2x≤4,
3
2
<x≤2;
∴f(x)的定義域為(
3
2
,2].
故答案為:(
3
2
,2].
點(diǎn)評:本題考查了求函數(shù)的定義域的問題,解題時應(yīng)根據(jù)函數(shù)的解析式,列出不等式(組),求出x的取值范圍,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R)滿足:對任意實(shí)數(shù)x,都有f(x)≥x,且當(dāng)x∈(1,3)時,有f(x)≤
1
8
(x+2)2成立.
(1)f(2);
(2)若f(-2)=0,求函數(shù)f(x)的表達(dá)式.
(3)在(2)的條件下,若關(guān)于x的不等式(4kx-1)2<kx2的解集中整數(shù)恰好有2個,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在△ABC中,角A、B、C的對邊分別為a,b,c,且滿足條件:a(sinA-sinC)+csinC=bsinB.
(Ⅰ)求角B的大;
(Ⅱ)求函數(shù)f(x)=sinx•cos(x+B)+
3
4
(x∈[0,
π
2
])的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從大小相同,標(biāo)號分別為1,2,3,4,6的五個球中任取三個,則這三個球標(biāo)號的乘積是4的倍數(shù)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有11個座位,現(xiàn)安排甲、乙2人就坐,甲、乙都不坐正中間的1個座位,并且這兩人不相鄰的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
=(1,2),
b
=(2,-m),且
a
b
,則
a
+
b
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知z1=2+i,
.
z2
=1-i,在復(fù)平面內(nèi)復(fù)數(shù)
z1
z2
所對應(yīng)的點(diǎn)位于第
 
象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1   (x為有理數(shù))
-1    (x為無理數(shù))
,數(shù)列an=[f(
2
n]n,sn是數(shù)列{an}的前n項和,則s2013-s2014=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sinθ+cosθ
sinθ-cosθ
=2,則
sinθ
cos3θ
+
cosθ
sin3θ
的值為( 。
A、-
817
27
B、
817
27
C、
820
27
D、-
820
27

查看答案和解析>>

同步練習(xí)冊答案