【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 設(shè)an是Sn與2的等差中項(xiàng),數(shù)列{bn}中,b1=1,點(diǎn)P(bn , bn+1)在直線y=x+2上.
(1)求an , bn;
(2)若數(shù)列{bn}的前n項(xiàng)和為Bn , 比較 + +…+ 與1的大。

【答案】
(1)解:∵an是Sn與2的等差中項(xiàng),∴2an=Sn+2 …①

當(dāng)n=1時(shí),a1=2;

n≥2時(shí),2an1=Sn1+2 …②;

∴由①﹣②得:an=2an1

∴{an}是一個(gè)以2為首項(xiàng),以2為公比的等比數(shù)列,

∴an=2n

又∵點(diǎn)P(bn,bn+1)在直線x﹣y+2=0上,

∴bn﹣bn+1+2=0即:bn+1﹣bn=2,

又b1=1,∴{bn}是一個(gè)以1為首項(xiàng),以2為公差的等差數(shù)列,

∴bn=2n﹣1.


(2)解:由(1)知:Bn=

+ +…+ = =1﹣ <1


【解析】(1)由于an是Sn與2的等差中項(xiàng),可得2an=Sn+2,利用當(dāng)n≥2時(shí),an=Sn﹣Sn1即可得出an與an1的關(guān)系,再利用等比數(shù)列的通項(xiàng)公式即可得出.由于點(diǎn)P(bn , bn+1)在直線x﹣y+2=0上,可得bn﹣bn+1+2=0即:bn+1﹣bn=2,再利用等差數(shù)列的通項(xiàng)公式即可得出.(2)利用等差數(shù)列的前n項(xiàng)和公式可得Bn , 再利用“放縮法”和“裂項(xiàng)求和”即可證明
【考點(diǎn)精析】本題主要考查了數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式的相關(guān)知識(shí)點(diǎn),需要掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的不等式ax2+bx+c<0的解集為{x|x<﹣2或x>﹣ },則關(guān)于x的不等式ax2﹣bx+c>0的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an}是等差數(shù)列,Sn是其前n項(xiàng)和,
(1)a2=﹣1,S15=75,求an與Sn;
(2)a1+a2+a3+a4=124,an+an1+an2+an3=156,Sn=210,求項(xiàng)數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C所對(duì)的邊長(zhǎng),且acosB﹣bcosA= c.
(1)求 的值;
(2)若A=60°,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn , 且2Sn=(an﹣1)(an+2),
(1)求數(shù)列{an}的通項(xiàng)公式
(2)設(shè)數(shù)列{ }的前n項(xiàng)和為Tn , 試比較Tn 的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:若函數(shù)f(x)對(duì)于其定義域內(nèi)的某一數(shù)x0 , 有 f(x0)=x0 , 則稱x0是f (x)的一個(gè)不動(dòng)點(diǎn).已知函數(shù)f(x)=ax2+(b+1)x+b﹣1 (a≠0).
(1)當(dāng)a=1,b=﹣2時(shí),求函數(shù)f(x)的不動(dòng)點(diǎn);
(2)若對(duì)任意的實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)不動(dòng)點(diǎn),求a的取值范圍;
(3)在(2)的條件下,若y=f(x)圖象上兩個(gè)點(diǎn)A,B的橫坐標(biāo)是函數(shù)f(x)的不動(dòng)點(diǎn),且A,B兩點(diǎn)關(guān)于直線y=kx+ 對(duì)稱,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(ω>0,0<φ< )的部分圖象如圖.
(1)求f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象上所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的 倍,再將所得函數(shù)圖象向右平移 個(gè)單位,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列數(shù)列中,既是遞增數(shù)列又是無窮數(shù)列的是(
A.1, , ,…
B.﹣1,﹣2,﹣3,﹣4,…
C.﹣1,﹣ ,﹣ ,﹣ ,…
D.1, ,…,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,PC⊥平面ABC,∠ACB=45°,BC=2 ,AB=2.
(1)求AC的長(zhǎng);
(2)若PC= ,點(diǎn)M在側(cè)棱PB上,且 = ,當(dāng)λ為何值時(shí),二面角B﹣AC﹣M的大小為30°.

查看答案和解析>>

同步練習(xí)冊(cè)答案