9.一個幾何體的三視圖如圖所示,則該幾何體的表面積是32+4$\sqrt{13}$.

分析 根據(jù)幾何體的直觀圖知該幾何體是一四棱錐,
畫出圖形,結(jié)合圖中數(shù)據(jù)求出它的表面積.

解答 解:根據(jù)幾何體的直觀圖知,它是一四棱錐,如圖中粗線所示;
結(jié)合圖中數(shù)據(jù),計算它的表面積為
S=S正方形ABCD+S△PCD+2S△PAD+S△PAB
=42+$\frac{1}{2}$×4×3+2×$\frac{1}{2}$×4×$\sqrt{{3}^{2}{+2}^{2}}$+$\frac{1}{2}$×4×$\sqrt{{4}^{2}{+3}^{2}}$=32+4$\sqrt{13}$.
故答案為:32+4$\sqrt{13}$.

點(diǎn)評 本題考查了根據(jù)幾何體三視圖求表面積的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知兩條直線l1:x+2my+6=0,l2:(m-2)x+3my+2m=0
問:當(dāng)m為何值時,l1與l2     
(1)平行;   
(2)垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\sqrt{3}$sinx•cosx-$\frac{1}{2}$cos2x(x∈R).
(1)求函數(shù)f(x)的最小值和最小正周期;
(2)設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且f(C)=1,B=30°,c=2$\sqrt{3}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)y=$\frac{sinx}{tanx}$(0<x<π)的圖象的大致形狀是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某地在建造游泳池時需建造附屬室外蓄水池,蓄水池要求容積為300m3,深為3m.如果池底每平方米的造價為120元,池壁每平方米的造價為100元,那么怎樣設(shè)計水池的底面的長和寬,才能使蓄水池總造價最低?最低總造價是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.化簡:
(1)$\frac{\sqrt{3}}{2}$sin(α+$\frac{π}{6}$)-$\frac{1}{2}$cos(α+$\frac{π}{6}$);
(2)$\frac{\sqrt{2}cosα-2sin(45°-α)}{2sin(60°+α)-\sqrt{3}cosα}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,F(xiàn)1,F(xiàn)2為橢圓的左、右焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)P為橢圓上一點(diǎn),$|OP|=\frac{{\sqrt{2}}}{4}a$,且|PF1|,|F1F2|,|PF2|成等比數(shù)列,則橢圓的離心率為( 。
A.$\frac{{\sqrt{2}}}{4}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{{\sqrt{6}}}{3}$D.$\frac{{\sqrt{6}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若圓C:x2+y2=4上的點(diǎn)到直線l:y=x+a的最小距離為2,則a=( 。
A.$2\sqrt{2}$B.$4\sqrt{2}$C.$±2\sqrt{2}$D.$±4\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{32}{3}$B.$\frac{{16\sqrt{3}}}{3}$C.$\frac{{32\sqrt{3}}}{3}$D.$\frac{{64\sqrt{3}}}{3}$

查看答案和解析>>

同步練習(xí)冊答案