12.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,cos2B-5cos(A+C)=2.
(1)求角B的值;
(2)若cosA=$\frac{1}{7}$,△ABC的面積為10$\sqrt{3}$,求BC邊上的中線長(zhǎng).

分析 (1)利用三角函數(shù)恒等變換的應(yīng)用化簡(jiǎn)已知等式可得2cos2B+5cosB-3=0,進(jìn)而解得cosB,結(jié)合B的范圍即可得解B的值;
(2)先根據(jù)兩角和差的正弦公式求出sinC,再根據(jù)正弦定理得到b,c的關(guān)系,再利用余弦定理可求BC的值,再由三角形面積公式可求AB,BD的值,利用余弦定理即可得解AD的值.

解答 解:(1)∵cos2B-5cos(A+C)=2.
∴2cos2B+5cosB-3=0,解得:cosB=$\frac{1}{2}$或-3(舍去),又B∈(0,π),
∴B=$\frac{π}{3}$.
(2)∵cosA=$\frac{1}{7}$,∴可得:sinA=$\frac{4\sqrt{3}}{7}$,
∴sinC=sin(A+B)=sinAcosB+cosAsinB=$\frac{4\sqrt{3}}{7}$×$\frac{1}{2}$+$\frac{1}{7}$×$\frac{\sqrt{3}}{2}$=$\frac{5\sqrt{3}}{14}$,
∴$\frac{c}=\frac{sinB}{sinC}$=$\frac{7}{5}$,
設(shè)b=7x,c=5x,則在△ABC中,由余弦定理得BC2=AB2+AC2-2AB•ACcosA,
∴BC=$\sqrt{(5x)^{2}+(7x)^{2}-2×5x×7x×\frac{1}{7}}$=8x,
∵△ABC的面積為10$\sqrt{3}$=$\frac{1}{2}$AB•BC•sinB=$\frac{1}{2}$×5x×8x×$\frac{\sqrt{3}}{2}$,解得:x=1,
∴AB=5,BC=8,AC=7,BD=4,
∴在△ABD中,由余弦定理得AD2=AB2+BD2-2AB•BDcosB=25+16-2×5×4×$\frac{1}{2}$=21,
∴解得:AD=$\sqrt{21}$.

點(diǎn)評(píng) 本題考查正弦定理、余弦定理及三角形的面積公式,熟記相關(guān)公式并靈活運(yùn)用是解題關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知f(x)=|1-$\frac{1}{x}$|,若存在實(shí)數(shù)a,b(a<b),使得y=f(x)在[a,b]上的值域?yàn)閇ma,mb],求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若點(diǎn)(x,y)在曲線y=|x|與y=2所圍成的封閉區(qū)域內(nèi)(包括邊界),則2x-y的最大值為( 。
A.-6B.6C.2D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.高一某研究性學(xué)習(xí)小組隨機(jī)抽取了100名年齡在10歲到60歲的市民進(jìn)行問(wèn)卷調(diào)查,并制作了頻率分布直方圖(如圖),從圖中數(shù)據(jù)可知a=0.035.現(xiàn)從上述年齡在20歲到50歲的市民中按年齡段采用分層抽樣的方法抽取30人,則在[20,30)年齡段抽取的人數(shù)應(yīng)為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.若二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R)滿足f(x+1)-f(x)=4x+1,且f(0)=3.
(1)求f(x)的解析式;
(2)設(shè)g(x)=f(2x),求g(x)在[-3,0]的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{xlnx-2x,x>0}\\{{x^2}+\frac{3}{2}x,x≤0}\end{array}}$的圖象上有且僅有四個(gè)不同的點(diǎn)關(guān)于直線y=-1的對(duì)稱點(diǎn)在y=kx-1的圖象上,則實(shí)數(shù)k的取值范圍是( 。
A.$({\frac{1}{2},1})$B.$({\frac{1}{2},\frac{3}{4}})$C.$({\frac{1}{3},1})$D.$({\frac{1}{2},2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若X是離散型隨機(jī)變量,P(X=a)=$\frac{1}{3}$,P(X=b)=$\frac{2}{3}$,且a<b,又已知E(X)=$\frac{2}{3}$,D(X)=$\frac{2}{9}$,則a+b的值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.某工廠產(chǎn)生的廢氣經(jīng)過(guò)過(guò)濾后排放,過(guò)濾過(guò)程中廢氣的污染物數(shù)量Pmg/L與時(shí)間th間的關(guān)系為P=P0e-kt,如果在前5個(gè)小時(shí)消除了10%的污染物,為了消除27.1%的污染物,則需要15小時(shí).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)函數(shù)${f_1}(x)=x,{f_2}(x)={x^2},{a_i}=\frac{i}{99},i=0,1,2,3,…,99$,記Sk=|fk(a1)-fk(a0)|+|fk(a2)-fk(a1)|+…+|fk(a99)-fk(a98)|,k=1,2,…,下列結(jié)論正確的是( 。
A.S1=1=S2B.S1=1>S2C.S1>1>S2D.S1<1<S2

查看答案和解析>>

同步練習(xí)冊(cè)答案