19.已知圓C:(x+1)2+y2=8,點(diǎn)A(1,0),P是圓C上任意一點(diǎn),線段AP的垂直平分線交CP于點(diǎn)Q,當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),點(diǎn)Q的軌跡為曲線E.
(1)求曲線E的方程;
(2)若直線l:y=kx+m與曲線E相交于M,N兩點(diǎn),O為坐標(biāo)原點(diǎn),求△MON面積的最大值.

分析 (1)根據(jù)橢圓的定義和性質(zhì),建立方程求出a,b即可.
(2)聯(lián)立直線和橢圓方程,利用消元法結(jié)合設(shè)而不求的思想進(jìn)行求解即可.

解答 解:(Ⅰ)∵點(diǎn)Q 在線段AP 的垂直平分線上,∴|AQ|=|PQ|.
又|CP|=|CQ|+|QP|=2$\sqrt{2}$,∴|CQ|+|QA|=2$\sqrt{2}$>|CA|=2.
∴曲線E是以坐標(biāo)原點(diǎn)為中心,C(-1,0)和A(1,0)為焦點(diǎn),長軸長為2$\sqrt{2}$ 的橢圓.
設(shè)曲線E 的方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1,(a>b>0).
∵c=1,a=$\sqrt{2}$,∴b2=2-1=1.
∴曲線 E的方程為$\frac{{x}^{2}}{2}+{y}^{2}=1$.
(Ⅱ)設(shè)M(x1,y1),N(x2,y2).
聯(lián)立$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$ 消去y,得(1+2k2)x2+4kmx+2m2-2=0.
此時(shí)有△=16k2-8m2+8>0.
由一元二次方程根與系數(shù)的關(guān)系,得x1+x2=$\frac{-4km}{1+2{k}^{2}}$,x1x2=$\frac{2{m}^{2}-2}{1+2{k}^{2}}$,.
∴|MN|=$\sqrt{1+{k}^{2}}•\sqrt{(\frac{-4km}{1+2{k}^{2}})^{2}-4×\frac{2{m}^{2}-2}{1+2{k}^{2}}}$=$\frac{\sqrt{1+{k}^{2}}}{1+2{k}^{2}}$$•\sqrt{8(2{k}^{2}-{m}^{2}+1)}$
∵原點(diǎn)O到直線l的距離d=$\frac{|m|}{\sqrt{1+{k}^{2}}}$-,
∴S△MON=$\frac{1}{2}|MN|•d$=$\frac{\sqrt{2}}{1+2{k}^{2}}$.$\sqrt{{m}^{2}(2{k}^{2}-{m}^{2}+1)}$,由△>0,得2k2-m2+1>0.
又m≠0,
∴據(jù)基本不等式,得S△MON=$\frac{\sqrt{2}}{1+2{k}^{2}}$.$\sqrt{{m}^{2}(2{k}^{2}-{m}^{2}+1)}$≤$\frac{\sqrt{2}}{1+2{k}^{2}}$$•\frac{{m}^{2}+2{k}^{2}-{m}^{2}+1}{2}$=$\frac{\sqrt{2}}{2}$,
當(dāng)且僅當(dāng)m2=$\frac{2{k}^{2}+1}{2}$時(shí),不等式取等號(hào).
∴△MON面積的最大值為$\frac{\sqrt{2}}{2}$.

點(diǎn)評(píng) 本題主要考查與橢圓有關(guān)的軌跡方程問題,以及直線和橢圓的位置關(guān)系的應(yīng)用,利用消元法以及設(shè)而不求的數(shù)學(xué)思想是解決本題的關(guān)鍵.,運(yùn)算量較大,有一定的難度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$,x∈R)的部分圖象如圖所示,則函數(shù)表達(dá)式為(  )
A.y=-4sin($\frac{π}{8}$x-$\frac{π}{4}$)B.y=-4sin($\frac{π}{8}$x+$\frac{π}{4}$)C.y=4sin($\frac{π}{8}$x-$\frac{π}{4}$)D.y=4sin($\frac{π}{8}$x+$\frac{π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若$|\overrightarrow a|=2$,$|\overrightarrow b|=4$,向量$\overrightarrow a$與向量$\overrightarrow b$的夾角為120°,則向量$\overrightarrow a$在向量$\overrightarrow b$方向上的投影等于( 。
A.-3B.-2C.2D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x+3≥y\\ x+y≥1\\ x≤1\end{array}\right.$,若直線x+ky=1將可行域分成面積相等的兩部分,則實(shí)數(shù)k的值為( 。
A.$\frac{1}{3}$B.3C.-3D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在△A BC中,三內(nèi)角 A,B,C的對(duì)邊分別為a,b,c,且a2=b2+c2+bc,$a=\sqrt{3}$,S為△A BC的面積,圓 O是△A BC的外接圓,P是圓 O上一動(dòng)點(diǎn),
(1)求$S+\sqrt{3}cos{B}cosC$取得最大值;
(2)當(dāng)B=30°時(shí),求$\overrightarrow{{P}{A}}•\overrightarrow{{P}{B}}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=|2x-1|.
(1)求不等式f(x)+|x+1|<2的解集;
(2)若函數(shù)g(x)=f(x)+f(x-1)的最小值為a,且m+n=a(m>0,n>0),求$\frac{4}{m}+\frac{1}{n}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.袋中有形狀、大小都相同的6只球,其中1只白球,2只紅球,3只黃球,從中隨機(jī)先后摸出2只球,在已知摸出第一只球?yàn)榘浊虻那闆r下,第二只球?yàn)辄S球的概率為$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.某程序框圖如圖,該程序運(yùn)行后輸出的k值是( 。
A.3B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知棱長為2,各面均為等邊三角形的四面體S-ABC,求它的表面積和體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案