20.?dāng)?shù)列{an}中,a1=1,an+1=an+2n-1,則a6=( 。
A.31B.32C.63D.64

分析 利用累加求和方法、等比數(shù)列的求和公式即可得出.

解答 解:∵a1=1,an+1=an+2n-1,
則a6=(a6-a5)+(a5-a4)+…+(a2-a1)+a1
=24+23+…+1+1
=$\frac{{2}^{5}-1}{2-1}$+1
=32.
故選:B.

點(diǎn)評(píng) 本題考查了累加求和方法、等比數(shù)列的求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知a,b∈R,i2=-1,則“a=b=1”是“$\frac{2+2i}{1-i}={(a+bi)^2}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知△ABC為銳角三角形,則下列判斷正確的是(  )
A.tan(sinA)<tan(cosB)B.tan(sinA)>tan(cosB)C.sin(tanA)<cos(tanB)D.sin(tanA)>cos(tanB)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.給定兩個(gè)長(zhǎng)度為1的平面向量$\overrightarrow{OA}$和$\overrightarrow{OB}$,它們的夾角為90°.點(diǎn)C在以O(shè)為圓心的圓弧$\widehat{AB}$上變動(dòng),若$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,其中x,y∈R,則xy的范圍是(  )
A.(0,1)B.[0,1]C.$({0,\frac{1}{2}})$D.$[{0,\frac{1}{2}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知$\overrightarrow a,\overrightarrow b$為單位向量,且$\overrightarrow a⊥\overrightarrow b$,向量$\overrightarrow c$滿足$|{\overrightarrow c+\overrightarrow a+\overrightarrow b}|=3$,則$|{\overrightarrow c}|$的取值范圍為( 。
A.$[1,1+\sqrt{2}]$B.$[2-\sqrt{2},2+\sqrt{2}]$C.$[\sqrt{2},2\sqrt{2}]$D.$[3-\sqrt{2},3+\sqrt{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)y=f(x)為定義在[-1,1]上的函數(shù),且滿足條件:①f(-1)=f(1)=0,②對(duì)任意u、v∈[-1,1],恒有|f(u)-f(v)|≤|u-v|,則以下結(jié)論正確的為(  )
A.存在u,v∈[-1,1],使|f(u)-f(v)|>1B.存在x0∈[-1,1],使f(x0)>1-x0
C.存在x0∈[-1,1],使f(x0)<x0-1D.對(duì)任意x∈[-1,1],有f(x)≤1-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知數(shù)列{an}的前n項(xiàng)和Sn滿足:Sn=2an-2n(n∈N*).
(1)求證:數(shù)列{an+2}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn=log2(an+2),Tn為數(shù)列$\{\frac{b_n}{{{a_n}+2}}\}$的前n項(xiàng)和,求證:Tn≥$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.下列說(shuō)法中:
(1)函數(shù)f(x)=$\frac{1}{x}$在其定義域內(nèi)單調(diào)遞減     
(2)若a>b>0,則a-$\frac{1}{a}>b-\frac{1}$;
(3)若a>0,b>0且2a+b=1,則$\frac{2}{a}+\frac{1}$的最小值為9
(4)函數(shù)f(x)=$\frac{ax+1}{x+2}$在(-2,+∞)上是增函數(shù),則實(shí)數(shù)a的取值范圍是$(\frac{1}{2},+∞)$;
(5)已知a,b,c是實(shí)數(shù),關(guān)于x的不等式ax2+bx+c≤0的解集是空集的充要條件是a>0且△≤0;
正確的序號(hào)為為(2),(3),(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知數(shù)列{an}為等差數(shù)列,數(shù)列{bn}為等比數(shù)列,且滿足a2017+a2018=π,$_{20}^{2}$=4,則tan$\frac{{a}_{2}+{a}_{4033}}{_{1}_{39}}$=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案