10.已知數(shù)列{an}為等差數(shù)列,數(shù)列{bn}為等比數(shù)列,且滿足a2017+a2018=π,$_{20}^{2}$=4,則tan$\frac{{a}_{2}+{a}_{4033}}{_{1}_{39}}$=1.

分析 根據(jù)等差數(shù)列和等比數(shù)列的性質(zhì),求出a2+a4033和b1b39的值,代入計(jì)算即可.

解答 解:數(shù)列{an}為等差數(shù)列,且a2017+a2018=π,
∴a2+a4033=a2017+a2018=π,
數(shù)列{bn}為等比數(shù)列,且$_{20}^{2}$=4,
∴b1b39=${_{20}}^{2}$=4,
∴tan$\frac{{a}_{2}+{a}_{4033}}{_{1}_{39}}$=tan$\frac{π}{4}$=1.
故答案為:1.

點(diǎn)評(píng) 本題考查了等差與等比數(shù)列的性質(zhì)與應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.?dāng)?shù)列{an}中,a1=1,an+1=an+2n-1,則a6=( 。
A.31B.32C.63D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知A(x1,y1),B(x2,y2)是拋物線C:x2=2py(p>0)上不同兩點(diǎn).
(1)設(shè)直線l:y=$\frac{p}{4}$與y軸交于點(diǎn)M,若A,B兩點(diǎn)所在的直線方程為y=x-1,且直線l:y=$\frac{p}{4}$恰好平分∠AFB,求拋物線C的標(biāo)準(zhǔn)方程.
(2)若直線AB與x軸交于點(diǎn)P,與y軸的正半軸交于點(diǎn)Q,且y1y2=$\frac{{p}^{2}}{4}$,是否存在直線AB,使得$\frac{1}{|PA|}$+$\frac{1}{|PB|}$=$\frac{3}{|PQ|}$?若存在,求出直線AB的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn=2n2-n,則數(shù)列{a2n}的前10項(xiàng)和等于( 。
A.380B.390C.400D.410

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=ex-asinx-1(a∈R).
(Ⅰ)若a=1,求f(x)在x=0處的切線方程;
(Ⅱ)若f(x)≥0對(duì)一切x∈[0,1]恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知實(shí)數(shù)x,y滿足約束條件$\left\{{\begin{array}{l}{x+y-2≤0}\\{x-y+2≥0}\\{y≥0}\end{array}}\right.$,則z=3x+2y的最大值為( 。
A.4B.6C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是R上的偶函數(shù),其圖象關(guān)于點(diǎn)M($\frac{3π}{4}$,0)對(duì)稱,且在區(qū)間[0,π]上是單調(diào)函數(shù),則ω+φ=( 。
A.$\frac{π}{2}$+$\frac{2}{3}$B.$\frac{π}{2}$+2C.$\frac{π}{2}$+$\frac{3}{2}$D.$\frac{π}{2}$+$\frac{10}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知集合A={-1,0,2},B={2,a2},若B⊆A,則實(shí)數(shù)a的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知復(fù)數(shù)z的共軛復(fù)數(shù)記為$\overline z,i$為虛數(shù)單位,若(1+2i)$\overline z$=4-3i,復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案