7.下列四個(gè)命題中的真命題是( 。
A.經(jīng)過(guò)定點(diǎn)P0(x0,y0)的直線都可以用方程y-y0=k(x-x0)表示
B.經(jīng)過(guò)任意兩個(gè)不同點(diǎn)P1(x1,y1)、P2(x2,y2)的直線都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示
C.不經(jīng)過(guò)原點(diǎn)的直線都可以用方程$\frac{x}{a}+\frac{y}=1$表示
D.經(jīng)過(guò)定點(diǎn)A(0,b)的直線都可以用方程y=kx+b表示

分析 根據(jù)各種直線方程的適用范圍,逐一分析四個(gè)命題的真假,可得答案.

解答 解:經(jīng)過(guò)定點(diǎn)P0(x0,y0),且斜率不存在的直線都可以用方程y-y0=k(x-x0)表示,故A為假命題;
經(jīng)過(guò)任意兩個(gè)不同點(diǎn)P1(x1,y1)、P2(x2,y2)的直線都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示,故B為真命題;
不經(jīng)過(guò)原點(diǎn),且與坐標(biāo)軸不垂直的直線都可以用方程$\frac{x}{a}+\frac{y}=1$表示,故C為假命題;
經(jīng)過(guò)定點(diǎn)A(0,b),且斜率不存在的直線都可以用方程y=kx+b表示,故D為假命題;
故選:B

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體考查了直線方程的適用范圍等知識(shí)點(diǎn),難度基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=2sin2(x+$\frac{π}{4}$)-$\sqrt{3}$cos2x,x∈[$\frac{π}{4}$,$\frac{π}{2}$].
(Ⅰ)求f(x)的值域;
(Ⅱ)若不等式|f(x)-m|<2在x∈[$\frac{π}{4}$,$\frac{π}{2}$]上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知向量$\overrightarrow{a}$=(-3,1),$\overrightarrow$=(1,-2),則$\overrightarrow{a}$在$\overrightarrow$方向上的投影為$-\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.命題“?x∈(-∞,0),有x2>0”的否定是?x∈(-∞,0),x2≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.在空間直角坐標(biāo)系中,設(shè)A(m,1,3),B(1,-1,1),且|AB|=2$\sqrt{2}$,則m=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知函數(shù)f(x)=sinx,若存在x1,x2,…,xm滿足0≤x1<x2<…xm≤6π,且|f(x1)-f(x2)|+|f(x2)-f(x3)|+…|f(xn-1)-f(xn)|=12,(m≥2,m∈N*),則m的最小值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=xlnx-a(x-1)2-x+1.
(1)當(dāng)a=0時(shí),求f(x)的單調(diào)區(qū)間與極值;
(2)當(dāng)x>1且a≥$\frac{1}{2}$時(shí),證明:f(x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=x+$\frac{4}{x}$
(1)判斷f(x)的奇偶性;
(2)證明f(x)在區(qū)間(2,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.函數(shù)y=3-4sin x-cos2x的最大值7和最小值-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案