已知函數(shù).

(Ⅰ)當時,求證:函數(shù)上單調遞增;

(Ⅱ)若函數(shù)有三個零點,求的值.

 

【答案】

(Ⅰ)

由于,故當時,,所以,

故函數(shù)上單調遞增                      。。。。。。。。。6分

(Ⅱ)當時,因為,且在R上單調遞增,

有唯一解                                      。。。。 (10分),

所以的變化情況如下表所示:

x

0

0

遞減

極小值

遞增

                                                               。。。。。12分

又函數(shù)有三個零點,所以方程有三個根,

,所以,解得     

【解析】(1)證明導函數(shù)在上恒大于等于零即可。

(2) 把函數(shù)有三個零點,轉化為方程有三個根求解,然后利用導數(shù)求出f(x)的極值,畫出草圖,數(shù)形結合求解即可.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)(1)當a=4,,求函數(shù)f(x)的最大值;(2)若x≥a , 試求f(x)+3 >0 的解集;(3)當時,f(x)≤2x – 2 恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年山東省濟寧市泗水一中高三(上)期末數(shù)學模擬試卷(理科)(解析版) 題型:選擇題

已知函數(shù),當x∈[1,3]時,f(x)=lnx,若在區(qū)間內,函數(shù)g(x)=f(x)-ax,有三個不同的零點,則實數(shù)a的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年福建省晉江市四校高三第二次聯(lián)合考試文科數(shù)學試卷 題型:選擇題

已知函數(shù),則當方程有三個不同實根時,實數(shù)的取值范圍                 是  (     )

A.      B.      C.            D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012年山東省濟寧市高二上學期期中考試文科數(shù)學 題型:解答題

(本小題滿分12分)

    已知函數(shù)f()=,當∈(-2,6)時,其值為正,而當∈(-∞,-2)∪(6,+∞)時,其值為負

(I)        求實數(shù)的值及函數(shù)f()的解析式

(II)設F()= -f()+4+12,問取何值時,方程F()=0有正根?

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年重慶市高一上學期期中考試數(shù)學試題 題型:解答題

(本小題滿分10分)

已知函數(shù),當點 (xy) 是函數(shù)y = f (x) 圖象上的點時,點是函數(shù)y = g(x) 圖象上的點.

(1)    寫出函數(shù)y = g (x) 的表達式;

(2)    當g(x)-f (x)0時,求x的取值范圍;

(3)    當x在 (2) 所給范圍內取值時,求的最大值.

 

查看答案和解析>>

同步練習冊答案