18.已知點E(-2,0),點P時圓F:(x-2)2+y2=36上任意一點,線段EP的垂直平分線交FP于點M,點M的軌跡記為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)過F的直線交曲線C于不同的A、B兩點,交y軸于點N,已知$\overrightarrow{NA}$=m$\overrightarrow{AF}$,$\overrightarrow{NB}$=n$\overrightarrow{BF}$,求m+n的值.

分析 (Ⅰ)求出|ME|+|MF|=6>|EF|=4,判斷點M的軌跡是以點E,F(xiàn)為焦點,長軸為6,焦距為4的橢圓,
然后求解方程.
(Ⅱ)求出F(2,0),若直線AB恰好過原點,計算m+n的值即可;
若直線AB不過原點,設(shè)直線AB:x=ty+2,t≠0,求出相關(guān)點的坐標與向量,表示出+n,聯(lián)立直線與橢圓方程的方程組,利用韋達定理,轉(zhuǎn)化求解即可.

解答 解:(Ⅰ)由題意知,|ME|+|MF|=|MP|+|MF|=r=6>|EF|=4,
故由橢圓定義知,點M的軌跡是以點E,F(xiàn)為焦點,長軸為6,焦距為4的橢圓,從而長半軸長為a=3,短半軸長為b=$\sqrt{{3}^{2}-{2}^{2}}$=$\sqrt{5}$,
∴曲線C的方程為:$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{5}=1$.  …(4分)
(Ⅱ)由題知F(2,0),
若直線AB恰好過原點,則A(-3,0),B(3,0),N(0,0),
∴$\overrightarrow{NA}$=(-3,0),$\overrightarrow{AF}$=(5,0),則m=$-\frac{3}{5}$,
$\overrightarrow{NB}$=(3,0),$\overrightarrow{BF}$=(-1,0),則n=-3,
∴m+n=$-\frac{18}{5}$.    …(2分)
若直線AB不過原點,設(shè)直線AB:x=ty+2,t≠0,
A(ty1+2,y1),B(ty2+2,y2),N(0,-$\frac{2}{t}$).
則$\overrightarrow{NA}$=(ty1+2,y1+$\frac{2}{t}$),$\overrightarrow{AF}$=(-ty1,-y1),
$\overrightarrow{NB}$=(ty2+2,y2+$\frac{2}{t}$),$\overrightarrow{BF}$=(-ty2,-y2),
由$\overrightarrow{NA}=m\overrightarrow{AF}$,得y1+$\frac{2}{t}$=m(-y1),從而m=$-1-\frac{2}{t{y}_{1}}$;
由$\overrightarrow{NB}=n\overrightarrow{BF}$,得y2+$\frac{2}{t}$=n(-y2),從而n=$-1-\frac{2}{t{y}_{2}}$;
故m+n=$-1-\frac{2}{t{y}_{1}}$+($-1-\frac{2}{t{y}_{2}}$)=$-2-\frac{2}{t}(\frac{1}{{y}_{1}}+\frac{1}{{y}_{2}})$=-2-$\frac{2}{t}×\frac{{y}_{1}+{y}_{2}}{{y}_{1}{y}_{2}}$.  …(8分)
聯(lián)立方程組得:$\left\{\begin{array}{l}{x=ty+2}\\{\frac{{x}^{2}}{9}+\frac{{y}^{2}}{5}=1}\end{array}\right.$,整理得(5t2+9)y2+20ty-25=0,
∴y1+y2=-$\frac{20t}{5{t}^{2}+9}$,y1y2=$-\frac{25}{5{t}^{2}+9}$,
∴m+n=-2-$\frac{2}{t}×\frac{{y}_{1}+{y}_{2}}{{y}_{1}{y}_{2}}$═$-2-\frac{2}{t}×\frac{20t}{25}$=-2-$\frac{8}{5}$=$-\frac{18}{5}$.
綜上所述,m+n=$-\frac{18}{5}$.…(12分)

點評 本題考查橢圓方程的求法,直線與橢圓的位置關(guān)系的綜合應(yīng)用,考查轉(zhuǎn)化思想以及計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若不等式a+cos2x<5-4sinx+$\sqrt{5a-4}$對一切x∈R恒成立,則實數(shù)a的取值范圍是( 。
A.(1,8)B.($\frac{4}{5}$,8]C.[$\frac{4}{5}$,8)D.[$\frac{4}{5}$,2)∪(8,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓方程為:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點P(0,1),且離心率e=$\frac{{\sqrt{3}}}{2}$.
(1)求橢圓方程;
(2)過原點的直線交橢圓于B,C兩點,A(1,$\frac{1}{2}$),求△ABC面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知拋物線E:y2=4x的焦點為F,點C(-1,0),過點F的直線l與拋物線E相交于A,B兩點,若AB⊥BC,則|AF|-|BF|=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的最小正周期為$\frac{2π}{3}$,最小值為-2,圖象過($\frac{π}{9}$,0),求該函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某中學(xué)擬在高一下學(xué)期開設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),該學(xué)校對100名高一新生進行了問卷調(diào)查,得到如下2×2列聯(lián)表:
喜歡游泳不喜歡游泳合計
男生10
女生20
合計
已知在這100人中隨機抽取1人抽到喜歡游泳的學(xué)生的概率為$\frac{3}{5}$.
(1)請將上述列聯(lián)表補充完整;
(2)并判斷是否有99%的把握認為喜歡游泳與性別有關(guān)?并說明你的理由;
(3)已知在被調(diào)查的學(xué)生中有5名來自甲班,其中3名喜歡游泳,現(xiàn)從這5名學(xué)生中隨機抽取2人,求恰好有1人喜歡游泳的概率.
下面是臨界值表僅供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
參考公式:K2的觀測值:$k=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+2)(a+c)(b+d)}$(其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)y=$\frac{{\sqrt{4-x}}}{x-1}$的定義域為( 。
A.(-∞,4)B.(-∞,1)∪(1,4]C.(0,4)D.R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.將10個相同的小球裝入3個編號為1,2,3的盒子(每次要把10個球裝完),要求每個盒子里球的個數(shù)不少于盒子的編號數(shù),這樣的裝法種數(shù)是( 。
A.9B.12C.15D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.數(shù)列1,3,6,10,x,21,…中的x等于( 。
A.17B.16C.15D.14

查看答案和解析>>

同步練習冊答案