【題目】將函數(shù) 圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來的 ,縱坐標(biāo)不變,再向右平移 個(gè)單位長度,得到函數(shù)y=g(x)的圖象,則下列說法正確的是(
A.函數(shù)g(x)的一條對稱軸是
B.函數(shù)g(x)的一個(gè)對稱中心是
C.函數(shù)g(x)的一條對稱軸是
D.函數(shù)g(x)的一個(gè)對稱中心是

【答案】C
【解析】解:將函數(shù) 圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來的 , 可得y=2sin(2x+ )的圖象,
然后縱坐標(biāo)不變,再向右平移 個(gè)單位長度,
得到函數(shù)y=g(x)=2sin(2x﹣ + )=2cos2x的圖象,
令x= ,求得g(x)=0,
可得( ,0)是g(x)的一個(gè)對稱中心,故排除A;
令x= ,求得g(x)=﹣1,
可得x= 是g(x)的圖象的一條對稱軸,故排除B,故C正確;
令x= ,求得g(x)= ,可得x= 不是g(x)的圖象的對稱中心,故排除D,
故選:C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識,掌握圖象上所有點(diǎn)向左(右)平移個(gè)單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐P﹣ABC中,PB⊥底面ABC,∠BCA=90°,PB=BC=CA=2,E為PC的中點(diǎn),點(diǎn)F在PA上,且2PF=FA.
(1)求證:BE⊥平面PAC;
(2)求直線AB與平面BEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年春晚過后,為了研究演員上春晚次數(shù)與受關(guān)注度的關(guān)系,某網(wǎng)站對其中一位經(jīng)常上春晚的演員上春晚次數(shù)與受關(guān)注度進(jìn)行了統(tǒng)計(jì),得到如下數(shù)據(jù):

上春晚次數(shù)x(單位:次)

2

4

6

8

10

粉絲數(shù)量y(單位:萬人)

10

20

40

80

100


(1)若該演員的粉絲數(shù)量g(x)≤g(1)=0與上春晚次數(shù)x滿足線性回歸方程,試求回歸方程 = x+ ,并就此分析,該演員上春晚12次時(shí)的粉絲數(shù)量;
(2)若用 (i=1,2,3,4,5)表示統(tǒng)計(jì)數(shù)據(jù)時(shí)粉絲的“即時(shí)均值”(四舍五入,精確到整數(shù)),從這5個(gè)“即時(shí)均值”中任選2數(shù),記所選的2數(shù)之和為隨機(jī)變量η,求η的分布列與數(shù)學(xué)期望. 參考公式: = =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)fx=,若對任意給定的m∈(1,+∞),都存在唯一的x0R滿足ffx0))=2a2m2+am,則正實(shí)數(shù)a的取值范圍為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠用鮮牛奶在某臺設(shè)備上生產(chǎn)A,B兩種奶制品.生產(chǎn)1噸A產(chǎn)品需鮮牛奶2噸,使用設(shè)備1小時(shí),獲利1000元;生產(chǎn)1噸B產(chǎn)品需鮮牛奶1.5噸,使用設(shè)備1.5小時(shí),獲利1200元.要求每天B產(chǎn)品的產(chǎn)量不超過A產(chǎn)品產(chǎn)量的2倍,設(shè)備每天生產(chǎn)A,B兩種產(chǎn)品時(shí)間之和不超過12小時(shí).假定每天可獲取的鮮牛奶數(shù)量W(單位:噸)是一個(gè)隨機(jī)變量,其分布列為

W

12

15

18

P

0.3

0.5

0.2

該廠每天根據(jù)獲取的鮮牛奶數(shù)量安排生產(chǎn),使其獲利最大,因此每天的最大獲利Z(單位:元)是一個(gè)隨機(jī)變量.
(1)求Z的分布列和均值;
(2)若每天可獲取的鮮牛奶數(shù)量相互獨(dú)立,求3天中至少有1天的最大獲利超過10000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖的程序框圖,若輸入的n為6,則輸出的p為(
A.8
B.13
C.29
D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義在[-1,1]上的奇函數(shù),且,若任意的,當(dāng)時(shí),總有

1)判斷函數(shù)[-1,1]上的單調(diào)性,并證明你的結(jié)論;

2)解不等式:;

3)若對所有的恒成立,其中是常數(shù)),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果對一切實(shí)數(shù)x、y,不等式 ﹣cos2x≥asinx﹣ 恒成立,則實(shí)數(shù)a的取值范圍是(
A.(﹣∞, ]
B.[3,+∞)
C.[﹣2 ,2 ]
D.[﹣3,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是不小于3的正整數(shù),集合,對于集合中任意兩個(gè)元素,.

定義1:.

定義2:若,則稱互為相反元素,記作,或.

(Ⅰ)若,,試寫出,,以及的值;

(Ⅱ)若,證明:;

(Ⅲ)設(shè)是小于的正奇數(shù),至少含有兩個(gè)元素的集合,且對于集合中任意兩個(gè)不相同的元素,,都有,試求集合中元素個(gè)數(shù)的所有可能值.

查看答案和解析>>

同步練習(xí)冊答案