【題目】將函數(shù) 圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來的 ,縱坐標(biāo)不變,再向右平移 個(gè)單位長度,得到函數(shù)y=g(x)的圖象,則下列說法正確的是( )
A.函數(shù)g(x)的一條對稱軸是
B.函數(shù)g(x)的一個(gè)對稱中心是
C.函數(shù)g(x)的一條對稱軸是
D.函數(shù)g(x)的一個(gè)對稱中心是
【答案】C
【解析】解:將函數(shù) 圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來的 , 可得y=2sin(2x+ )的圖象,
然后縱坐標(biāo)不變,再向右平移 個(gè)單位長度,
得到函數(shù)y=g(x)=2sin(2x﹣ + )=2cos2x的圖象,
令x= ,求得g(x)=0,
可得( ,0)是g(x)的一個(gè)對稱中心,故排除A;
令x= ,求得g(x)=﹣1,
可得x= 是g(x)的圖象的一條對稱軸,故排除B,故C正確;
令x= ,求得g(x)= ,可得x= 不是g(x)的圖象的對稱中心,故排除D,
故選:C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識,掌握圖象上所有點(diǎn)向左(右)平移個(gè)單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱錐P﹣ABC中,PB⊥底面ABC,∠BCA=90°,PB=BC=CA=2,E為PC的中點(diǎn),點(diǎn)F在PA上,且2PF=FA.
(1)求證:BE⊥平面PAC;
(2)求直線AB與平面BEF所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年春晚過后,為了研究演員上春晚次數(shù)與受關(guān)注度的關(guān)系,某網(wǎng)站對其中一位經(jīng)常上春晚的演員上春晚次數(shù)與受關(guān)注度進(jìn)行了統(tǒng)計(jì),得到如下數(shù)據(jù):
上春晚次數(shù)x(單位:次) | 2 | 4 | 6 | 8 | 10 |
粉絲數(shù)量y(單位:萬人) | 10 | 20 | 40 | 80 | 100 |
(1)若該演員的粉絲數(shù)量g(x)≤g(1)=0與上春晚次數(shù)x滿足線性回歸方程,試求回歸方程 = x+ ,并就此分析,該演員上春晚12次時(shí)的粉絲數(shù)量;
(2)若用 (i=1,2,3,4,5)表示統(tǒng)計(jì)數(shù)據(jù)時(shí)粉絲的“即時(shí)均值”(四舍五入,精確到整數(shù)),從這5個(gè)“即時(shí)均值”中任選2數(shù),記所選的2數(shù)之和為隨機(jī)變量η,求η的分布列與數(shù)學(xué)期望. 參考公式: = , = ﹣ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=,若對任意給定的m∈(1,+∞),都存在唯一的x0∈R滿足f(f(x0))=2a2m2+am,則正實(shí)數(shù)a的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠用鮮牛奶在某臺設(shè)備上生產(chǎn)A,B兩種奶制品.生產(chǎn)1噸A產(chǎn)品需鮮牛奶2噸,使用設(shè)備1小時(shí),獲利1000元;生產(chǎn)1噸B產(chǎn)品需鮮牛奶1.5噸,使用設(shè)備1.5小時(shí),獲利1200元.要求每天B產(chǎn)品的產(chǎn)量不超過A產(chǎn)品產(chǎn)量的2倍,設(shè)備每天生產(chǎn)A,B兩種產(chǎn)品時(shí)間之和不超過12小時(shí).假定每天可獲取的鮮牛奶數(shù)量W(單位:噸)是一個(gè)隨機(jī)變量,其分布列為
W | 12 | 15 | 18 |
P | 0.3 | 0.5 | 0.2 |
該廠每天根據(jù)獲取的鮮牛奶數(shù)量安排生產(chǎn),使其獲利最大,因此每天的最大獲利Z(單位:元)是一個(gè)隨機(jī)變量.
(1)求Z的分布列和均值;
(2)若每天可獲取的鮮牛奶數(shù)量相互獨(dú)立,求3天中至少有1天的最大獲利超過10000元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在[-1,1]上的奇函數(shù),且,若任意的,當(dāng)時(shí),總有.
(1)判斷函數(shù)在[-1,1]上的單調(diào)性,并證明你的結(jié)論;
(2)解不等式:;
(3)若對所有的恒成立,其中(是常數(shù)),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果對一切實(shí)數(shù)x、y,不等式 ﹣cos2x≥asinx﹣ 恒成立,則實(shí)數(shù)a的取值范圍是( )
A.(﹣∞, ]
B.[3,+∞)
C.[﹣2 ,2 ]
D.[﹣3,3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是不小于3的正整數(shù),集合,對于集合中任意兩個(gè)元素,.
定義1:.
定義2:若,則稱,互為相反元素,記作,或.
(Ⅰ)若,,,試寫出,,以及的值;
(Ⅱ)若,證明:;
(Ⅲ)設(shè)是小于的正奇數(shù),至少含有兩個(gè)元素的集合,且對于集合中任意兩個(gè)不相同的元素,,都有,試求集合中元素個(gè)數(shù)的所有可能值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com