若對(duì)任意的x∈A,y∈B,(AR,BR),有唯一確定的f(x,y)與之對(duì)應(yīng),則稱f(x,y)為關(guān)于x、y的二元函數(shù)。
現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實(shí)數(shù)x、y的廣義“距離”:
(1)非負(fù)性:f(x,y)≥0,當(dāng)且僅當(dāng)x=y時(shí)取等號(hào);
(2)對(duì)稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對(duì)任意的實(shí)數(shù)z均成立。
今給出下列四個(gè)二元函數(shù):①f(x,y)=|x-y|;②f(x,y)=(x-y)2;③f(x,y)=;④f(x,y)=x2+y2。
能夠稱為關(guān)于實(shí)數(shù)x、y的廣義“距離”的函數(shù)的序號(hào)是(    )。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•晉中三模)若對(duì)任意的x∈A,y∈B,(A⊆R,B⊆R),有唯一確定的f(x,y)與之對(duì)應(yīng),則稱f(x,y)為關(guān)于x、y的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實(shí)數(shù)x、y的廣義“距離”:
(1)非負(fù)性:f(x,y)≥0,當(dāng)且僅當(dāng)x=y時(shí)取等號(hào);
(2)對(duì)稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對(duì)任意的實(shí)數(shù)z均成立.
今給出下列四個(gè)二元函數(shù):①f(x,y)=|x-y|;  ②f(x,y)=(x-y)2;
f(x,y)=
x-y
; ④f(x,y)=x2+y2
能夠稱為關(guān)于實(shí)數(shù)x、y的廣義“距離”的函數(shù)的序號(hào)是
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河北省冀州中學(xué)2011屆高三4月模擬考試數(shù)學(xué)理科試題 題型:013

已知方程(y+1)(|x|+2)=4,若對(duì)任意的x∈[a,b](a,b∈Z),都存在唯一的y∈[0,1]使方程都成立,且對(duì)任意y∈[0,1],都有x∈[a,b](a,b∈Z)使方程成立,則a+b的最大值等于

[  ]
A.

0

B.

2

C.

4

D.

6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若對(duì)任意的x∈A,y∈B,(A⊆R,B⊆R),有唯一確定的f(x,y)與之對(duì)應(yīng),則稱f(x,y)為關(guān)于x、y的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實(shí)數(shù)x、y的廣義“距離”:
(1)非負(fù)性:f(x,y)≥0,當(dāng)且僅當(dāng)x=y時(shí)取等號(hào);
(2)對(duì)稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對(duì)任意的實(shí)數(shù)z均成立.
今給出下列四個(gè)二元函數(shù):①f(x,y)=|x-y|;、趂(x,y)=(x-y)2;
數(shù)學(xué)公式; ④f(x,y)=x2+y2
能夠稱為關(guān)于實(shí)數(shù)x、y的廣義“距離”的函數(shù)的序號(hào)是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知方程(y+1)(|x|+2)=4,若對(duì)任意的x∈[a,b](a,b∈Z),都存在唯一的y∈[0,1]使方程都成立,且對(duì)任意y∈[0,1],都有x∈[a,b](a,b∈Z)使方程成立,則a+b的最大值等于


  1. A.
    0
  2. B.
    2
  3. C.
    4
  4. D.
    6

查看答案和解析>>

同步練習(xí)冊(cè)答案