1.已知函數(shù)f(x)=xlnx,g(x)=ax2-(a+1)x+1(a∈R).
(Ⅰ)當(dāng)a=0時,求f(x)+g(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x≥1時,f(x)≤g(x)+lnx,求實數(shù)a的取值范圍.

分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,得到函數(shù)的單調(diào)區(qū)間即可;
(Ⅱ)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍求出函數(shù)的單調(diào)區(qū)間,從而確定出a的范圍即可.

解答 解:(Ⅰ)設(shè)h(x)=f(x)+g(x)=xlnx-x+1,
∴h'(x)=lnx,
由h'(x)<0,得x∈(0,1),由h'(x)>0,得x∈(1,+∞),
∴h(x)在(0,1)單調(diào)遞減,在(1,+∞)單調(diào)遞增;
(Ⅱ)由f(x)≤g(x)+lnx,得(x-1)lnx≤(ax-1)(x-1),
因為x≥1,所以:(ⅰ)當(dāng)x=1時,a∈R.
(ⅱ)當(dāng)x>1時,可得lnx≤ax-1,令h(x)=ax-lnx-1,
則只需h(x)=ax-lnx-1≥0即可,
因為$h'(x)=a-\frac{1}{x}$.且 $0<\frac{1}{x}<1$,
①當(dāng)a≤0時,h′(x)<0,得h(x)在(1,+∞)單調(diào)遞減,
且可知h(e)=ae-2<0這與h(x)=ax-lnx-1≥0矛盾,舍去;
②當(dāng)a≥1時,h′(x)>0,得h(x)=ax-lnx-1在(1,+∞)上是增函數(shù),
此時h(x)=ax-lnx-1>h(1)=a-1≥0.
③當(dāng)0<a<1時,可得 h(x)在$(1,\frac{1}{a})$單調(diào)遞減,在$(\frac{1}{a},+∞)$單調(diào)遞增,
∴$h{(x)_{min}}=h(\frac{1}{a})=lna<0$矛盾,
綜上:當(dāng)a≥1時,f(x)≤g(x)+lnx恒成立.

點評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=-x3+ax2+bx(a,b∈R)的圖象如圖所示,它與x軸在原點相切,且x軸與函數(shù)圖象所圍成的區(qū)域(如圖陰影部分)的面積為$\frac{1}{12}$,則a的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知拋物線Γ:y=x2及拋物線Γ上的一點A(2,4).
(1)求拋物線Γ在點A處的切線l的方程;
(2)求拋物線Γ及切線l與x軸所圍成圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.點P(5,-2,8)關(guān)于面xOy對稱點Q坐標(biāo)為(5,-2,-8).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點E為棱PC的中點.
(1)證明:BE⊥DC;
(2)求直線BE與平面PBD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知命題:在平面直角坐標(biāo)系xOy中,橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,△ABC的頂點B在橢圓上,頂點A,C分別為橢圓的左、右焦點,橢圓的離心率為e,則$\frac{sinA+sinC}{sinB}=\frac{1}{e}$,現(xiàn)將該命題類比到雙曲線中,△ABC的頂點B在雙曲線上,頂點A、C分別為雙曲線的左、右焦點,設(shè)雙曲線的方程為$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$.雙曲線的離心率為e,則有$\frac{{|{sinA-sinC}|}}{sinB}=\frac{1}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列函數(shù)為奇函數(shù)的是( 。
A.y=x+1B.y=exC.y=x2+xD.y=x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)函數(shù)f(x)=$\frac{1}{2}$x2+2ax,g(x)=3a2lnx.
(I)當(dāng)a=e時,函數(shù)h(x)=f(x)-g(x)在[1,t)內(nèi)無極值,求t的范圍;
(Ⅱ)若a<0時,函數(shù)y=f(x)和y=g(x)的圖象在某點處有相同的切線,且不等式f(x)≥kx+b≥g(x)對于任意的正實數(shù)x都成立,試求常數(shù)k、b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.將一鋼球放入底面半徑為3cm的圓柱形玻璃容器中,水面升高4cm,則鋼球的半徑是3cm.

查看答案和解析>>

同步練習(xí)冊答案