分析 (1)利用三種方程的轉(zhuǎn)化方法,求直線l與曲線C的普通方程;
(2)直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),代入y2=4x,整理可得3t2-8t-32=0,利用參數(shù)的幾何意義,求|$\frac{1}{|MA|}$-$\frac{1}{|MB|}$|的值.
解答 解:(1)直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),消去參數(shù),可得普通方程y=$\sqrt{3}$(x-2);
曲線C的極坐標方程為ρsin2θ-4cosθ=0,直角坐標方程為y2=4x;
(2)直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),代入y2=4x,整理可得3t2-8t-32=0,
設(shè)A、B對應(yīng)的參數(shù)分別為t1,t2,則t1+t2=$\frac{8}{3}$,t1t2=-$\frac{32}{3}$,
∴|$\frac{1}{|MA|}$-$\frac{1}{|MB|}$|=|$\frac{{t}_{1}+{t}_{2}}{{t}_{1}{t}_{2}}$|=$\frac{1}{4}$.
點評 本題考查的知識點是圓的極坐標方程,直線的參數(shù)方程,直線參數(shù)方程中參數(shù)的幾何意義,難度中檔.
科目:高中數(shù)學 來源: 題型:選擇題
A. | {2,3,4,5} | B. | {2,3} | C. | {2,3,5} | D. | {2,3,4} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2 | B. | -i | C. | i | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源:2017屆湖南長沙長郡中學高三上周測十二數(shù)學(理)試卷(解析版) 題型:選擇題
已知函數(shù)(),若且在上有且僅有三個零點,則( )
A. B.2 C. D.
查看答案和解析>>
科目:高中數(shù)學 來源:2017屆湖南長沙長郡中學高三上周測十二數(shù)學(理)試卷(解析版) 題型:選擇題
已知是定義在上的偶函數(shù),且在區(qū)間上單調(diào)遞增,若實數(shù)滿足,則的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com