【題目】已知橢圓 的離心率為,兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線(xiàn)構(gòu)成的三角形面積為.
(I)求橢圓的方程;
(II)設(shè)與圓相切的直線(xiàn)交橢圓于,兩點(diǎn)(為坐標(biāo)原點(diǎn)),的最大值.
【答案】I. ;Ⅱ.2
【解析】
I:根據(jù)離心率得到,由三角形面積公式得到,進(jìn)而求出參數(shù)值,和方程;Ⅱ:當(dāng)ABx軸時(shí),,當(dāng)AB與x軸不垂直時(shí),設(shè)直線(xiàn)AB的方程為,根據(jù)直線(xiàn)和圓的位置關(guān)系得到,由=,借助于韋達(dá)定理表示求解即可.
I.由題設(shè):
兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線(xiàn)構(gòu)成的三角形面積為,
解得
∴橢圓C的方程為
Ⅱ.設(shè)
1.當(dāng)ABx軸時(shí),
2.當(dāng)AB與x軸不垂直時(shí),設(shè)直線(xiàn)AB的方程為
由已知,得
設(shè)三角形OAB的高為h即圓的半徑,直線(xiàn)和圓的切點(diǎn)為M點(diǎn),根據(jù)幾何關(guān)系得到:=,
把代入橢圓方程消去y,
整理得,
有
得
當(dāng)且僅當(dāng),即時(shí)等號(hào)成立.
當(dāng)時(shí),
綜上所述
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
如圖所示的空間幾何體,平面ACD⊥平面ABC,AB=BC=CA=DA=DC=BE=2,BE和平面ABC所成的角為.且點(diǎn)E在平面ABC上的射影落在的平分線(xiàn)上.
(1)求證:DE//平面ABC;
(2)求二面角E—BC—A的余弦;
(3)求多面體ABCDE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓E:的離心率是,,分別為橢圓E的左右頂點(diǎn),B為上頂點(diǎn),的面積為直線(xiàn)l過(guò)點(diǎn)且與橢圓E交于P,Q兩點(diǎn).
求橢圓E的標(biāo)準(zhǔn)方程;
求面積的最大值;
設(shè)直線(xiàn)與直線(xiàn)交于點(diǎn)N,證明:點(diǎn)N在定直線(xiàn)上,并寫(xiě)出該直線(xiàn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】空氣質(zhì)量按照空氣質(zhì)量指數(shù)大小分為七檔(五級(jí)),相對(duì)應(yīng)空氣質(zhì)量的七個(gè)類(lèi)別,指數(shù)越大,說(shuō)明污染的情況越嚴(yán)重,對(duì)人體危害越大.
指數(shù) | 級(jí)別 | 類(lèi)別 | 戶(hù)外活動(dòng)建議 |
Ⅰ | 優(yōu) | 可正;顒(dòng) | |
Ⅱ | 良 | ||
Ⅲ | 輕微污染 | 易感人群癥狀有輕度加劇,健康人群出現(xiàn)刺激癥狀,心臟病和呼吸系統(tǒng)疾病患者應(yīng)減少體積消耗和戶(hù)外活動(dòng). | |
輕度污染 | |||
Ⅳ | 中度污染 | 心臟病和肺病患者癥狀顯著加劇,運(yùn)動(dòng)耐受力降低,健康人群中普遍出現(xiàn)癥狀,老年人和心臟病、肺病患者應(yīng)減少體力活動(dòng). | |
中度重污染 | |||
Ⅴ | 重污染 | 健康人運(yùn)動(dòng)耐受力降低,由明顯強(qiáng)烈癥狀,提前出現(xiàn)某些疾病,老年人和病人應(yīng)當(dāng)留在室內(nèi),避免體力消耗,一般人群應(yīng)盡量減少戶(hù)外活動(dòng). |
現(xiàn)統(tǒng)計(jì)邵陽(yáng)市市區(qū)2016年1月至11月連續(xù)60天的空氣質(zhì)量指數(shù),制成如圖所示的頻率分布直方圖.
(1)求這60天中屬輕度污染的天數(shù);
(2)求這60天空氣質(zhì)量指數(shù)的平均值;
(3)一般地,當(dāng)空氣質(zhì)量為輕度污染或輕度污染以上時(shí)才會(huì)出現(xiàn)霧霾天氣,且此時(shí)出現(xiàn)霧霾天氣的概率為,請(qǐng)根據(jù)統(tǒng)計(jì)數(shù)據(jù),求在未來(lái)2天里,邵陽(yáng)市恰有1天出現(xiàn)霧霾天氣的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中,為自然對(duì)數(shù)的底數(shù).
(1)若函數(shù)的圖象在處的切線(xiàn)與直線(xiàn)垂直,求的值;
(2)關(guān)于的不等式在上恒成立,求的取值范圍;
(3)討論函數(shù)極值點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知在矩形中,,,平面,且.
(1)問(wèn)當(dāng)實(shí)數(shù)在什么范圍時(shí),邊上能存在點(diǎn),使得?
(2)當(dāng)邊上有且僅有一個(gè)點(diǎn)使得時(shí),求二面角的余弦值大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,,,點(diǎn)在邊上,點(diǎn)關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)分別為,則的面積的最大值為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有下列四個(gè)命題:
①“若a2+b2=0,則a,b全為0”的逆否命題是“若a,b全不為0,則a2+b2≠0”
②若事件A與事件B互斥,則P(A∪B)=P(A)+P(B);
③在△ABC中,“A<B”是“sinA<sinB”成立的充要條件;
④若α、β是兩個(gè)相交平面,直線(xiàn)mα,則在平面β內(nèi),一定存在與直線(xiàn)m平行的直線(xiàn).
上述命題中,其中真命題的序號(hào)是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某養(yǎng)殖產(chǎn)品在某段時(shí)間內(nèi)的生長(zhǎng)情況,在該批產(chǎn)品中隨機(jī)抽取了120件樣本,測(cè)量其增長(zhǎng)長(zhǎng)度(單位:),經(jīng)統(tǒng)計(jì)其增長(zhǎng)長(zhǎng)度均在區(qū)間內(nèi),將其按,,,,,分成6組,制成頻率分布直方圖,如圖所示其中增長(zhǎng)長(zhǎng)度為及以上的產(chǎn)品為優(yōu)質(zhì)產(chǎn)品.
(Ⅰ)求圖中的值;
(Ⅱ)已知這120件產(chǎn)品來(lái)自于,兩個(gè)試驗(yàn)區(qū),部分?jǐn)?shù)據(jù)如下列聯(lián)表:
試驗(yàn)區(qū) | 試驗(yàn)區(qū) | 合計(jì) | |
優(yōu)質(zhì)產(chǎn)品 | 20 | ||
非優(yōu)質(zhì)產(chǎn)品 | 60 | ||
合計(jì) |
將聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為優(yōu)質(zhì)產(chǎn)品與,兩個(gè)試驗(yàn)區(qū)有關(guān)系,并說(shuō)明理由;
下面的臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
(Ⅲ)以樣本的頻率代表產(chǎn)品的概率,從這批產(chǎn)品中隨機(jī)抽取4件進(jìn)行分析研究,計(jì)算抽取的這4件產(chǎn)品中含優(yōu)質(zhì)產(chǎn)品的件數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com