【題目】已知橢圓 的離心率為,兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線(xiàn)構(gòu)成的三角形面積為.

(I)求橢圓的方程;

(II)設(shè)與圓相切的直線(xiàn)交橢圓,兩點(diǎn)(為坐標(biāo)原點(diǎn)),的最大值.

【答案】I. ;Ⅱ.2

【解析】

I:根據(jù)離心率得到,由三角形面積公式得到,進(jìn)而求出參數(shù)值,和方程;Ⅱ:當(dāng)ABx軸時(shí),,當(dāng)ABx軸不垂直時(shí),設(shè)直線(xiàn)AB的方程為,根據(jù)直線(xiàn)和圓的位置關(guān)系得到,由=,借助于韋達(dá)定理表示求解即可.

I.由題設(shè):

兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線(xiàn)構(gòu)成的三角形面積為

解得

∴橢圓C的方程為

Ⅱ.設(shè)

1.當(dāng)ABx軸時(shí),

2.當(dāng)AB與x軸不垂直時(shí),設(shè)直線(xiàn)AB的方程為

由已知,得

設(shè)三角形OAB的高為h即圓的半徑,直線(xiàn)和圓的切點(diǎn)為M點(diǎn),根據(jù)幾何關(guān)系得到:=

代入橢圓方程消去y,

整理得,

當(dāng)且僅當(dāng),即時(shí)等號(hào)成立.

當(dāng)時(shí),

綜上所述

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

如圖所示的空間幾何體,平面ACD⊥平面ABC,AB=BC=CA=DA=DC=BE=2BE和平面ABC所成的角為.且點(diǎn)E在平面ABC上的射影落在的平分線(xiàn)上.

1)求證:DE//平面ABC;

2)求二面角E—BC—A的余弦;

3)求多面體ABCDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓E:的離心率是,分別為橢圓E的左右頂點(diǎn),B為上頂點(diǎn),的面積為直線(xiàn)l過(guò)點(diǎn)且與橢圓E交于P,Q兩點(diǎn).

求橢圓E的標(biāo)準(zhǔn)方程;

面積的最大值;

設(shè)直線(xiàn)與直線(xiàn)交于點(diǎn)N,證明:點(diǎn)N在定直線(xiàn)上,并寫(xiě)出該直線(xiàn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】空氣質(zhì)量按照空氣質(zhì)量指數(shù)大小分為七檔(五級(jí)),相對(duì)應(yīng)空氣質(zhì)量的七個(gè)類(lèi)別,指數(shù)越大,說(shuō)明污染的情況越嚴(yán)重,對(duì)人體危害越大.

指數(shù)

級(jí)別

類(lèi)別

戶(hù)外活動(dòng)建議

優(yōu)

可正;顒(dòng)

輕微污染

易感人群癥狀有輕度加劇,健康人群出現(xiàn)刺激癥狀,心臟病和呼吸系統(tǒng)疾病患者應(yīng)減少體積消耗和戶(hù)外活動(dòng).

輕度污染

中度污染

心臟病和肺病患者癥狀顯著加劇,運(yùn)動(dòng)耐受力降低,健康人群中普遍出現(xiàn)癥狀,老年人和心臟病、肺病患者應(yīng)減少體力活動(dòng).

中度重污染

重污染

健康人運(yùn)動(dòng)耐受力降低,由明顯強(qiáng)烈癥狀,提前出現(xiàn)某些疾病,老年人和病人應(yīng)當(dāng)留在室內(nèi),避免體力消耗,一般人群應(yīng)盡量減少戶(hù)外活動(dòng).

現(xiàn)統(tǒng)計(jì)邵陽(yáng)市市區(qū)2016年1月至11月連續(xù)60天的空氣質(zhì)量指數(shù),制成如圖所示的頻率分布直方圖.

(1)求這60天中屬輕度污染的天數(shù);

(2)求這60天空氣質(zhì)量指數(shù)的平均值;

(3)一般地,當(dāng)空氣質(zhì)量為輕度污染或輕度污染以上時(shí)才會(huì)出現(xiàn)霧霾天氣,且此時(shí)出現(xiàn)霧霾天氣的概率為,請(qǐng)根據(jù)統(tǒng)計(jì)數(shù)據(jù),求在未來(lái)2天里,邵陽(yáng)市恰有1天出現(xiàn)霧霾天氣的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中,為自然對(duì)數(shù)的底數(shù).

(1)若函數(shù)的圖象在處的切線(xiàn)與直線(xiàn)垂直,求的值;

(2)關(guān)于的不等式上恒成立,求的取值范圍;

(3)討論函數(shù)極值點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知在矩形中,,,平面,且.

1)問(wèn)當(dāng)實(shí)數(shù)在什么范圍時(shí),邊上能存在點(diǎn),使得?

2)當(dāng)邊上有且僅有一個(gè)點(diǎn)使得時(shí),求二面角的余弦值大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】,,,,點(diǎn)在邊,點(diǎn)關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)分別為,的面積的最大值為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有下列四個(gè)命題:

a2+b20,則ab全為0”的逆否命題是a,b全不為0,則a2+b2≠0”

②若事件A與事件B互斥,則PAB)=PA+PB);

③在ABC中,AB“sinAsinB成立的充要條件;

④若α、β是兩個(gè)相交平面,直線(xiàn)mα,則在平面β內(nèi),一定存在與直線(xiàn)m平行的直線(xiàn).

上述命題中,其中真命題的序號(hào)是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某養(yǎng)殖產(chǎn)品在某段時(shí)間內(nèi)的生長(zhǎng)情況,在該批產(chǎn)品中隨機(jī)抽取了120件樣本,測(cè)量其增長(zhǎng)長(zhǎng)度(單位:),經(jīng)統(tǒng)計(jì)其增長(zhǎng)長(zhǎng)度均在區(qū)間內(nèi),將其按,,,,,分成6組,制成頻率分布直方圖,如圖所示其中增長(zhǎng)長(zhǎng)度為及以上的產(chǎn)品為優(yōu)質(zhì)產(chǎn)品.

(Ⅰ)求圖中的值;

(Ⅱ)已知這120件產(chǎn)品來(lái)自于兩個(gè)試驗(yàn)區(qū),部分?jǐn)?shù)據(jù)如下列聯(lián)表:

試驗(yàn)區(qū)

試驗(yàn)區(qū)

合計(jì)

優(yōu)質(zhì)產(chǎn)品

20

非優(yōu)質(zhì)產(chǎn)品

60

合計(jì)

將聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為優(yōu)質(zhì)產(chǎn)品與兩個(gè)試驗(yàn)區(qū)有關(guān)系,并說(shuō)明理由;

下面的臨界值表僅供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

(Ⅲ)以樣本的頻率代表產(chǎn)品的概率,從這批產(chǎn)品中隨機(jī)抽取4件進(jìn)行分析研究,計(jì)算抽取的這4件產(chǎn)品中含優(yōu)質(zhì)產(chǎn)品的件數(shù)的分布列和數(shù)學(xué)期望

查看答案和解析>>

同步練習(xí)冊(cè)答案