(12分)
已知橢圓中心在原點,焦點在x軸上,長軸長等于12,離心率為.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過橢圓左頂點作直線l垂直于x軸,若動點M到橢圓右焦點的距離比它到直線l的距離小4,求點M的軌跡方程.

解(Ⅰ)設橢圓的半長軸長為a,半短軸長為b,半焦距為c.
由已知,2a=12,所以a=6.           (1分)
,即a=3c,所以3c=6,即c=2.   …(3分)[
于是b2=a2-c2=36-4=32.   …………………(5分)
因為橢圓的焦點在x軸上,
故橢圓的標準方程是.(6分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題12分)
、分別是橢圓 的左、右焦點,是該橢圓上的一個動點,為坐標原點.

(1)求的取值范圍;
(2)設過定點的直線與橢圓交于不同的兩點M、N,且∠為銳角,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設A、B是橢圓上的兩點,點N(1,3)是線段AB的中點,線段AB的垂直平分線與橢圓相交于C、D兩點.
(Ⅰ)確定的取值范圍,并求直線AB的方程;
(Ⅱ)當時求由A、B、C、D四點組成的四邊形的面積。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

((本小題滿分12分)
已知橢圓的一個焦點與拋物線的焦點重合,且橢圓短軸的兩個端點與構成正三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點的直線與橢圓交于不同兩點,試問在軸上是否存在定點,使恒為定值? 若存在,求出的坐標及定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知是橢圓的左、右焦點,過點F1作傾斜角為 的直線交橢圓于A,B兩點,的內切圓的半徑為
(I)求橢圓的離心率;
(II)若,求橢圓的標準方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的離心率為,過其右焦點斜率為)的直線與橢圓交于A,B兩點,若,則的值為(   )
A  1         B        C         D  2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的左準線為l,左、右焦點分別為F1、F2,拋物線C2的準線為l,焦點為F2,C1C2的一個交點為P,則|PF2|的值等于
A.B.C.2D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓的左焦點為,右頂點為,點在橢圓上,且軸,直線軸于點.若,則橢圓的離心率是__________.

查看答案和解析>>

同步練習冊答案