【題目】設(shè)函數(shù),其中.
(1)當時,的零點個數(shù);
(2)若的整數(shù)解有且唯一,求的取值范圍.
【答案】(1)只有一個零點(2)
【解析】
(1)求導(dǎo),根據(jù)導(dǎo)數(shù)求函數(shù)的單調(diào)性,結(jié)合極值即可判斷;(2)易發(fā)現(xiàn),再分和根據(jù)導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系討論題設(shè)成立時的取值范圍,求交集即可.
解:(1),當時,,函數(shù)單增,
且時函數(shù)值都已經(jīng)大于0了;當時,,函數(shù)單減,
且,所以只有一個零點
(2)觀察發(fā)現(xiàn),下證除整數(shù)0外再無其他整數(shù) ,
①當時,,根據(jù)同向不等式乘法得到,因為,
所以,所以函數(shù)單增,且趨于時函數(shù)值顯然很大很大;
但要保證只有唯一整數(shù)0,需要,卻發(fā)現(xiàn)恒成立,
②當時,要保證只有唯一整數(shù)0,首先需要,得到
當時,,根據(jù)同向不等式得到,又因,
所以,所以函數(shù)在單減,且
綜上所述:的整數(shù)解有且唯一時,
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,平面,,點是矩形內(nèi)(含邊界)的動點,且,,直線與平面所成的角為.記點的軌跡長度為,則______;當三棱錐的體積最小時,三棱錐的外接球的表面積為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某餐廳通過查閱了最近5次食品交易會參會人數(shù) (萬人)與餐廳所用原材料數(shù)量 (袋),得到如下統(tǒng)計表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
參會人數(shù) (萬人) | 13 | 9 | 8 | 10 | 12 |
原材料 (袋) | 32 | 23 | 18 | 24 | 28 |
(1)根據(jù)所給5組數(shù)據(jù),求出關(guān)于的線性回歸方程.
(2)已知購買原材料的費用 (元)與數(shù)量 (袋)的關(guān)系為,
投入使用的每袋原材料相應(yīng)的銷售收入為700元,多余的原材料只能無償返還,據(jù)悉本次交易大會大約有15萬人參加,根據(jù)(1)中求出的線性回歸方程,預(yù)測餐廳應(yīng)購買多少袋原材料,才能獲得最大利潤,最大利潤是多少?(注:利潤銷售收入原材料費用).
參考公式: , .
參考數(shù)據(jù): , , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】目前有聲書正受著越來越多人的喜愛.某有聲書公司為了解用戶使用情況,隨機選取了名用戶,統(tǒng)計出年齡分布和用戶付費金額(金額為整數(shù))情況如下圖.
有聲書公司將付費高于元的用戶定義為“愛付費用戶”,將年齡在歲及以下的用戶定義為“年輕用戶”.已知抽取的樣本中有的“年輕用戶”是“愛付費用戶”.
(1)完成下面的列聯(lián)表,并據(jù)此資料,能否有的把握認為用戶“愛付費”與其為“年輕用戶”有關(guān)?
愛付費用戶 | 不愛付費用戶 | 合計 | |
年輕用戶 | |||
非年輕用戶 | |||
合計 |
(2)若公司采用分層抽樣方法從“愛付費用戶”中隨機選取人,再從這人中隨機抽取人進行訪談,求抽取的人恰好都是“年輕用戶”的概率.
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生身高情況,某校以10%的比例對全校700名學(xué)生按性別進行分層抽樣檢查,測得身高情況的統(tǒng)計圖如下:
(1)估計該校男生的人數(shù);并求出值
(2)估計該校學(xué)生身高在之間的概率;
(3)從樣本中身高在之間的女生中任選2人,求至少有1人身高在之間的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當 時,設(shè),討論的導(dǎo)函數(shù)的單調(diào)性;
(2)當時,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:過點,左、右焦點分別是,,過的直線與橢圓交于,兩點,且的周長為.
(1)求橢圓的方程;
(2)若點滿足,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—5: 不等式選講
已知函數(shù)f(x)= 的定義域為R.
(Ⅰ)求實數(shù)m的取值范圍;
(Ⅱ)若m的最大值為n,當正數(shù)a,b滿足 =n時,求7a+4b的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com