為調(diào)查某市學(xué)生百米運(yùn)動(dòng)成績(jī),從該市學(xué)生中按照男女生比例隨機(jī)抽取50名學(xué)生進(jìn)行百米測(cè)試,測(cè)試成績(jī)?nèi)慷冀橛?3秒到18秒之間,將測(cè)試結(jié)果按如下方式分成五組,第一組[13,14),第二組[14,15),…,第五組[17,18],如圖是按上述分組方法得到的頻率分布直方圖.
(1)設(shè)m,n表示樣本中兩個(gè)學(xué)生的百米測(cè)試成績(jī),已知m,n∈[13,14)∪[17,18],求事件“|m-n|>2”的概率;
(2)根據(jù)有關(guān)規(guī)定,成績(jī)小于16秒為達(dá)標(biāo).如果男女生使用相同的達(dá)標(biāo)標(biāo)準(zhǔn),則男女生達(dá)標(biāo)情況如附表:
     性別
是否達(dá)標(biāo)
合計(jì)
達(dá)標(biāo) a=24 b=
 
 
不達(dá)標(biāo) c=
 
d=12  
合計(jì)     n=50
根據(jù)上表數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“體育達(dá)標(biāo)與性別有關(guān)”?若有,你能否提出一個(gè)更好的解決方法來(lái)?
附:
P(K2≥k) 0.050 0.010 0.001
k 3.841 6.635 10.828
考點(diǎn):獨(dú)立性檢驗(yàn)的應(yīng)用
專(zhuān)題:計(jì)算題,概率與統(tǒng)計(jì)
分析:(1)成績(jī)?cè)赱13,14)的人數(shù)有2人,設(shè)為a,b.成績(jī)?cè)赱17,18]的人數(shù)有3人,設(shè)為A,B,C;基本事件總數(shù)為10,事件“|m-n|>2”由6個(gè)基本事件組成.根據(jù)古典概型公式可求出所求;
(2)根據(jù)列聯(lián)表所給的數(shù)據(jù),代入隨機(jī)變量的觀測(cè)值公式,得到觀測(cè)值的結(jié)果,把觀測(cè)值的結(jié)果與臨界值進(jìn)行比較,即可求得.
解答: 解:(1)由題意,成績(jī)?cè)赱13,14)的人數(shù)有:50×0.04=2人,設(shè)為a,b.
成績(jī)?cè)赱17,18]的人數(shù)有:50×0.06=3人,設(shè)為A,B,C.
m,n∈[13,14)時(shí)有ab一種情況.
m,n∈[17,18]時(shí)有AB,AC,BC三種情況.
m,n分別在[13,14)和[17,18]時(shí)有aA,aB,aC,bA,bB,bC六種情況.
基本事件總數(shù)為10,事件“|m-n|>2”由6個(gè)基本事件組成.
所以P(|m-n|>2)=
6
10
=
3
5
.(6分)
(2)依題意得到相應(yīng)的2×2列聯(lián)表如下:
       性別
是否達(dá)標(biāo)
合計(jì)
達(dá)標(biāo) a=24 b=6 30
不達(dá)標(biāo) c=8 d=12 20
合計(jì) 32 18 n=50
K2=
50×(24×12-6×8)2
32×18×30×20
≈8.333.
由于8.333>6.635,故在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“體育達(dá)標(biāo)與性別有關(guān)”.
故可以根據(jù)男女生性別劃分達(dá)標(biāo)的標(biāo)準(zhǔn).(12分)
點(diǎn)評(píng):本題主要考查了獨(dú)立性檢驗(yàn)的應(yīng)用、頻率分布直方圖,以及古典概型的概率問(wèn)題、用樣本的數(shù)字特征估計(jì)總體的數(shù)字特征等有關(guān)知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)滿足f(x+1)=
3
2
+f(x)(x∈R),且f(1)=
5
2
,則數(shù)列{f(n)}(n∈N*)前20項(xiàng)的和為(  )
A、305B、315
C、325D、335

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)狱c(diǎn)P的x坐標(biāo)恒為0,y坐標(biāo)恒為2,則動(dòng)點(diǎn)P的軌跡是( 。
A、平面B、直線
C、不是平面也不是直線D、以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

先后拋擲一枚骰子,記向上的點(diǎn)數(shù)為a,b.事件A:點(diǎn)(a,b)落在圓x2+y2=12內(nèi);事件B:f(a)<0,其中函數(shù)f(x)=x2-(2t+1)x+t(t+1),t為常數(shù).已知P(B)>0
(1)求P(A);
(2)當(dāng)t=
1
2
時(shí),求P(B);
(3)如A、B同時(shí)發(fā)生的概率P(AB)=
1
36
,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足
y≤x
x+ay≤4
y≥1
,若z=3x+y的最大值為16,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,正方形ADEF與梯形ABCD所在的平面互相垂直,AD⊥CD,
AB∥CD,CD=2AB=2AD.
(Ⅰ)求證:BC⊥BE;
(Ⅱ)求直線CE與平面BDE所成角的正切值;
(Ⅲ)在EC上找一點(diǎn)M,使得BM∥平面ADEF,請(qǐng)確定M點(diǎn)的位置,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,公差為d.已知S2,S3+1,S4成等差數(shù)列.
(Ⅰ)求d的值;
(Ⅱ)若a1,a2,a5成等比數(shù)列,求
an+1
2(Sn+4)
(n∈N*)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx+a,g(x)=x-a.
(Ⅰ)當(dāng)直線y=g(x)恰好為曲線y=f(x)的切線時(shí),求a的值;
(Ⅱ)當(dāng)a>0時(shí),若函數(shù)F(x)=f(x)•g(x)在區(qū)間[e-
3
2
,1]上不單調(diào),求a的取值范圍;
(Ⅲ)若a∈Z且xf(x)+g(x)>0對(duì)一切x>1恒成立,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列{an}中a1=2,公比q=-2,記πn=a1×a2×…×an(即πn表示數(shù)列{an}的前n項(xiàng)之積),則π8,π9,π10,π11中值最大的是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案