已知函數(shù)f(x)=x2-2ax+3,g(x)=mx+5-2m.
(Ⅰ)若函數(shù)F(x)=f(3x),x∈[-1,1],F(xiàn)(x)的最小值為h(a),求h(a)的解析式;
(Ⅱ)若x∈[1,4],當(dāng)a=2時(shí)f(x)的值域?yàn)锳,g(x)的值域?yàn)锽,A∪B=B,求m的取值范圍.
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(Ⅰ)換元法轉(zhuǎn)化為二次函數(shù)求解,F(xiàn)(x)=y=t2-2at+3=(t-a)2+3-a2,則對(duì)稱軸為t=a,根據(jù)對(duì)稱軸與區(qū)間 的關(guān)系討論①當(dāng)a≤
1
3
時(shí),t=
1
3
時(shí),F(x)min=h(a)=
28
9
-
2a
3
,②當(dāng)
1
3
<a<3
時(shí),t=a時(shí),F(x)min=h(a)=3-a2,③當(dāng)a≥3時(shí),t=3時(shí),F(xiàn)(x)min=h(a)=12-6a.
(Ⅱ)分類討論求解即可①當(dāng)m=0時(shí),g(x)=5,為常數(shù),不符合題意;②當(dāng)m>0時(shí),B=[5-m,5+2m],需
5-m≤-1
5+2m≥3
,解得m≥6,
③當(dāng)m<0時(shí),B=[5+2m,5-m],需
5+2m≤-1
5-m≥3
,解得m≤-3.
解答: 解:(Ⅰ)設(shè)t=3x,∵x∈[-1,1],∴t∈[
1
3
,3]
,
令F(x)=y=t2-2at+3=(t-a)2+3-a2,則對(duì)稱軸為t=a,
①當(dāng)a≤
1
3
時(shí),t=
1
3
時(shí),F(x)min=h(a)=
28
9
-
2a
3

②當(dāng)
1
3
<a<3
時(shí),t=a時(shí),F(x)min=h(a)=3-a2,
③當(dāng)a≥3時(shí),t=3時(shí),F(xiàn)(x)min=h(a)=12-6a.
綜上:h(a)=
28
9
-
2a
3
,a≤
1
3
3-a2,
1
3
<a<3
12-6a,a≥3
,
(Ⅱ)當(dāng)a=2時(shí),f(x)=x2-4x+3=(x-2)2-1
∵x∈[1,4],∴f(x)的值域A=[-1,3],
∵A∪B=B,∴A⊆B,下面求g(x)的值域B
①當(dāng)m=0時(shí),g(x)=5,為常數(shù),不符合題意;
②當(dāng)m>0時(shí),B=[5-m,5+2m],∵A⊆B,
5-m≤-1
5+2m≥3
,解得m≥6,
③當(dāng)m<0時(shí),B=[5+2m,5-m],∵A⊆B,
5+2m≤-1
5-m≥3
,解得m≤-3.
綜上:m≥6或m≤-3.
點(diǎn)評(píng):本題考查了函數(shù)的性質(zhì),分類討論的思想,不等式的運(yùn)用,屬于綜合題,但是難度不大,關(guān)鍵是確定分類的標(biāo)準(zhǔn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,圓錐SO中,AB、CD為底面圓的兩條直徑,AB∩CD=0,且AB⊥CD,SO=OB=2,P為SB的中點(diǎn).異面直線SA與PD所成角的正切值為( 。
A、1
B、
2
C、2
D、2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

y=ax2+bx+c(a≠0)的圖象如圖所示,則點(diǎn)M(a,bc)在( 。 
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:
1
12
+
1
22
+…+
1
n2
7
4
,n∈Z*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:ax-2y-2a+4=0,l2:2x+a2y-2a2-4=0,其中0<a<2,當(dāng)l1,l2與兩坐標(biāo)軸圍成的四邊形面積最小時(shí),求l1與l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

非零向量
a
,
b
滿足
a
b
-2
a
2
b
2=0,|
a
|+|
b
|=1,則
a
b
的夾角的最小值是(  )
A、
π
6
B、
π
3
C、-
π
3
D、-
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,已知a2=5,a8=17,求數(shù)列的公差及通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α∈(0,
π
4
),cos(α-
π
4
)=
4
5
,則cosα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cosxsin(x+
π
6
)+1,x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(Ⅱ)若x∈[-
π
6
,
π
3
],求函數(shù)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案