【題目】十九大提出:堅決打贏脫貧攻堅戰(zhàn),做到精準扶貧,我省某幫扶單位為幫助定點扶貧村真正脫貧,堅持扶貧同扶智相結(jié)合,幫助貧困村種植臍橙,并利用互聯(lián)網(wǎng)電商進行銷售,為了更好銷售,現(xiàn)從該村的臍橙樹上隨機摘下100個臍橙進行測重,其質(zhì)量分布在區(qū)間(單位:克),統(tǒng)計質(zhì)量的數(shù)據(jù)作出其頻率分布直方圖如圖所示:
(1)按分層抽樣的方法從質(zhì)量落在,的臍橙中隨機抽取5個,再從這5個臍橙中隨機抽2個,求這2個臍橙質(zhì)量至少有一個不小于400克的概率;
(2)以各組數(shù)據(jù)的中間數(shù)值代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該村的臍橙種植地上大約還有100000個臍橙待出售,某電商提出兩種收購方案:
A.所有臍橙均以7元/千克收購;
B.低于350克的臍橙以2元/個收購,其余的以3元/個收購
請你通過計算為該村選擇收益較好的方案.
(參考數(shù)據(jù):()
【答案】(1);(2)見解析
【解析】
(1)由題意首先確定各個區(qū)間內(nèi)臍橙的個數(shù),然后列出所有可能的取值,利用古典概型計算公式確定所求的概率值即可;
(2)由題意分別計算兩種方案的收益值,選擇收益高的方案即可.
(1)由題得臍橙質(zhì)量在和的比例為3:2.
應(yīng)分別在質(zhì)量為和的臍橙中各抽取3個和2個.
記抽取質(zhì)量在的臍橙為,,質(zhì)量在
則從這5個臍橙中隨機抽取2個的情況共有以下10種:
,,,,,,,,,,
其中質(zhì)量至少有一個不小于400克的7種情況,故所求概率為
(2)方案好,理由如下:
由頻率分布直方圖可知,臍橙質(zhì)量在的頻率為同理,質(zhì)量在,,,,的頻率依次為0.16.0.24.0.3,0.2,0.05
若按方案收購:
臍橙質(zhì)量低于350克的個數(shù)為個
臍橙質(zhì)量不低于350克的個數(shù)為55000個
收益為元
若按方案收購:
根據(jù)題意各段臍橙個數(shù)依次為5000,16000.24000,30000,20000.5000.
于是總收益為 (元)
方案的收益比方案的收益高,應(yīng)該選擇方案.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,錯誤的是( )
A.圓錐所有的軸截面是全等的等腰三角形
B.圓柱的軸截面是過母線的截面中面積最大的一個
C.圓錐的軸截面是所有過頂點的界面中面積最大的一個
D.當(dāng)球心到平面的距離小于球面半徑時,球面與平面的交線總是一個圓
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】微信運動是由騰訊開發(fā)的一個類似計步數(shù)據(jù)庫的公眾賬號,很多手機用戶加入微信運動后,為了讓自己的步數(shù)能領(lǐng)先于朋友,運動的積極性明顯增強.微信運動公眾號為了解用戶的一些情況,在微信運動用戶中隨機抽取了100名用戶,統(tǒng)計了他們某一天的步數(shù),數(shù)據(jù)整理如下:
萬步 | |||||||
人 | 5 | 20 | 50 | 18 | 3 | 3 | 1 |
(Ⅰ)根據(jù)表中數(shù)據(jù),在如圖所示的坐標平面中作出其頻率分布直方圖,并在縱軸上標明各小長方形的高;
(Ⅱ)若視頻率分布為概率分布,在微信運動用戶中隨機抽取3人,求至少2人步數(shù)多于1.2萬步的概率;
(Ⅲ)若視頻率分布為概率分布,在微信運動用戶中隨機抽取2人,其中每日走路不超過0.8萬步的有人,超過1.2萬步的有人,設(shè),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程和的直角坐標方程;
(2)已知曲線的極坐標方程為,,,點是曲線與的交點,點是曲線與的交點,且,均異于原點,且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
某學(xué)校高一數(shù)學(xué)興趣小組對學(xué)生每周平均體育鍛煉小時數(shù)與體育成績優(yōu)秀(體育成績滿分100分,不低于85分稱優(yōu)秀)人數(shù)之間的關(guān)系進行分析研究,他們從本校初二,初三,高一,高二,高三年級各隨機抽取了40名學(xué)生,記錄并整理了這些學(xué)生周平均體育鍛煉小時數(shù)與體育成績優(yōu)秀人數(shù),得到如下數(shù)據(jù)表:
初二 | 初三 | 高一 | 高二 | 高三 | |
周平均體育鍛煉小時數(shù)工(單位:小時) | 14 | 11 | 13 | 12 | 9 |
體育成績優(yōu)秀人數(shù)y(單位:人) | 35 | 26 | 32 | 26 | 19 |
該興趣小組確定的研究方案是:先從這5組數(shù)據(jù)中選取3組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進行檢驗.
(1)若選取的是初三,高一,高二的3組數(shù)據(jù),請根據(jù)這3組數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選取的檢驗數(shù)據(jù)的誤差均不超過1,則認為得到的線性回歸方程是可靠的,試問(1)中所得到的線性回歸方程是否可靠?
參考數(shù)據(jù):,.
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,,兩點分別在上,且使,. 現(xiàn)將沿折起,使平面平面,得到四棱錐 (如圖2)
(1)證明:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C:,則( )
A.雙曲線C的離心率等于半焦距的長
B.雙曲線與雙曲線C有相同的漸近線
C.雙曲線C的一條準線被圓x2+y2=1截得的弦長為
D.直線y=kx+b(k,bR)與雙曲線C的公共點個數(shù)只可能為0,1,2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在以為圓心,6為半徑的圓內(nèi)有一點,點為圓上的任意一點,線段的垂直平分線和半徑交于點.
(1)判斷點的軌跡是什么曲線,并求其方程;
(2)記點的軌跡為曲線,過點的直線與曲線交于,兩點,求的最大值;
(3)在圓上的任取一點,作曲線的兩條切線,切點分別為、,試判斷與是否垂直,并給出證明過程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com