已知函數(shù)在(1,2)上是增函數(shù),在(0,1)上是減函數(shù)。
求的值;
當(dāng)時(shí),若在內(nèi)恒成立,求實(shí)數(shù)的取值范圍;
求證:方程在內(nèi)有唯一解.
(Ⅰ),
(Ⅱ)。(Ⅲ)方程=0在內(nèi)有唯一解。
解析試題分析:(Ⅰ)對任意的恒成立,因此。同理,由即對任意恒成立,因此。所以,
。
(Ⅱ),時(shí),為減函數(shù),最小值為1.
令,則.
∵,,∴,∴在上為增函數(shù),其最大值為
。
∴,得,故。
(Ⅲ)由得
設(shè),則,
令,由得,解得,
令得,則
,有最小值0,且當(dāng)時(shí),,
∴方程=0在內(nèi)有唯一解。
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及極值、最值,方程的解。
點(diǎn)評:典型題,在給定區(qū)間,導(dǎo)數(shù)非負(fù),函數(shù)為增函數(shù),導(dǎo)數(shù)非正,函數(shù)為減函數(shù)。涉及“不等式恒成立”“方程的解”等問題,往往通過構(gòu)造函數(shù),轉(zhuǎn)化成求函數(shù)的最值問題,利用導(dǎo)數(shù)加以解決。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知.
(Ⅰ)時(shí),求證在內(nèi)是減函數(shù);
(Ⅱ)若在內(nèi)有且只有一個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),,其中是的導(dǎo)函數(shù).
(1)對滿足的一切的值,都有,求實(shí)數(shù)的取值范圍;
(2)設(shè),當(dāng)實(shí)數(shù)在什么范圍內(nèi)變化時(shí),函數(shù)的圖象與直線只有一個(gè)公共點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,,直線與函數(shù)、的圖象都相切,且與函數(shù)的圖象的切點(diǎn)的橫坐標(biāo)為.
(Ⅰ)求直線的方程及的值;
(Ⅱ)若(其中是的導(dǎo)函數(shù)),求函數(shù)的最大值;
(Ⅲ)當(dāng)時(shí),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù) .
(Ⅰ)若曲線y=f(x)在(1,f(1))處的切線與直線x+y+1=0平行,求a的值;
(Ⅱ)若a>0,函數(shù)y=f(x)在區(qū)間(a,a 2-3)上存在極值,求a的取值范圍;
(Ⅲ)若a>2,求證:函數(shù)y=f(x)在(0,2)上恰有一個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求函數(shù)的極值點(diǎn)與極值;
(2)設(shè)為的導(dǎo)函數(shù),若對于任意,且,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ln x-.
(1)若a>0,試判斷f(x)在定義域內(nèi)的單調(diào)性;
(2)若f(x)在[1,e]上的最小值為,求a的值;
(3)若f(x)<x2在(1,+∞)上恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(I)若為的極值點(diǎn),求實(shí)數(shù)的值;
(II)若在上為增函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅲ)當(dāng)時(shí),方程有實(shí)根,求實(shí)數(shù)的最大值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com