解:(1)f′(x)=
=4x-4a+lnx(4x-4a)=4(x-a)(lnx+1),(x>0).
①若0<a<
,當x∈(0,a),x∈(
,+∞)時,f′(x)>0,f(x)單調遞增;當x∈(a,
)時,f′(x)<0,f(x)單調遞減,
所以f(x)的單調遞增區(qū)間是(0,a),(
,+∞);單調遞減區(qū)間是(a,
).
②若a=
,f′(x)≥0,f(x)在(0,+∞)上單調遞增.
③若a>
,當x∈(0,
),x∈(a,+∞)時,f′(x)>0,f(x)單調遞增;當x∈(
,a)時,f′(x)<0,f(x)單調遞減,
所以f(x)的單調遞增區(qū)間是(0,
),(a,+∞);單調遞減區(qū)間是(
,a).
(2)因為x≥1,所以由(2x-4a)lnx>-x,得
(2x
2-4ax)lnx+x
2>0,即函數(shù)f(x)>0對x≥1恒成立,
由(Ⅰ)可知,當0<a≤
時,f(x)在,[1,+∞)上單調遞增,則f(x)
min=f(1)>0,成立,故0<a≤
.
當
<a≤1,則f(x)在[1,+∞)上單調遞增,f(x)
min=f(1)=1>0恒成立,符合要求.
當a>1時,f(x)在(1,a)上單調遞減,(a,+∞)上單調遞增,則
f(x)
min=f(a)>0,即(2a
2-4a
2)lna+a
2>0,1<a<
.
綜上所述,0<a<
.
分析:(1)求出f′(x),解不等式f′(x)>0,f′(x)<0,注意對a進行討論;
(2)對?x∈[1,+∞),不等式(2x-4a)lnx>-x恒成立,可得(2x
2-4ax)lnx+x
2>0,即f(x)>0恒成立,轉化為f(x)
min>0,借助(1)問結論可求.
點評:本題考查應用導數(shù)研究函數(shù)單調性、最值問題,導數(shù)是研究函數(shù)單調性、最值問題的有力工具.