已知橢圓左焦點是,右焦點是,右準線是上一點,與橢圓交于點,滿足,則等于(   )
A.B.C.D.
B.

分析:先求出焦點坐標及準線方程,由向量間的關系得出 點Q 分有向線段F1P 成的比為λ= ,由定比分點坐標公式求得 Q的橫坐標,
代入橢圓的方程可得Q的縱坐標,進而求得|QF2|.

解:如圖F1(-1,0)、F2(1,0),右準線l方程x=5,
∵2+3=,∴+=,
=,QP=2QF1,∴點 Q 分有向線段F1P 成的比為λ=
設 Q(m,n),則由定比分點坐標公式得m==1,
把Q(m,n)代入橢圓的方程得 n=±,
∴|QF2|=
故選B.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓P的中心O在坐標原點,焦點在軸上,且經(jīng)過點A(0,),離心率為。
(1)求橢圓P的方程;
(2)是否存在過點E(0,-4)的直線交橢圓P于兩不同點,且滿足,若存在,求直線的方程;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(13分)
在直角坐標系中,點M到點的距離之和是4,點M的軌跡是C與x軸的負半軸交于點A,不過點A的直線與軌跡C交于不同的兩點P和Q.
(I)求軌跡C的方程;
(II)當時,求k與b的關系,并證明直線過定點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若橢圓的左、右焦點分別為,拋物線的焦點為F。若,則此橢圓的離心率為         。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

求橢圓為參數(shù))的準線方程

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)標準橢圓的兩焦點為在橢圓上,且.  (1)求橢圓方程;(2)若N在橢圓上,O為原點,直線的方向向量為,若交橢圓于A、B兩點,且NANB軸圍成的三角形是等腰三角形(兩腰所在的直線是NA、NB),則稱N點為橢圓的特征點,求該橢圓的特征點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的焦點為,點在該橢圓上,且,則點軸的距離為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點P在橢圓上,焦點為F1、F2,且∠F1PF2=30°,求△F1PF2的面積.(8分)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知,焦點在y軸上的橢圓的標準方程是           

查看答案和解析>>

同步練習冊答案