分析 (Ⅰ)由f(x)>5,得|x-2|>3,即可解關(guān)于x的不等式f(x)>5;
(Ⅱ)若不等式f(x)≥g(x)對任意x∈R恒成立,得|x-2|≥m|x|-2對任意x∈R恒成立,分類討論,分離參數(shù),即可求m的取值范圍.
解答 解:(Ⅰ)由f(x)>5,得|x-2|>3,
即x-2<-3或x-2>3,…(3分)
∴x<-1或x>5.故原不等式的解集為{x|x<-1或x>5}…(5分)
(Ⅱ)由f(x)≥g(x),得|x-2|≥m|x|-2對任意x∈R恒成立,
當(dāng)x=0時,不等式|x-2|≥m|x|-2成立,
當(dāng)x≠0時,問題等價于$m≤\frac{{|{x-2}|+2}}{|x|}$對任意非零實數(shù)恒成立,…(7分)
∵$\frac{{|{x-2}|+2}}{|x|}≥\frac{{|{x-2+2}|}}{|x|}=1$,∴m≤1,即m的取值范圍是(-∞,1].…(10分)
點評 本題考查不等式的解法,考查恒成立問題,考查學(xué)生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{2}$-1 | B. | $\sqrt{2}$+1 | C. | 8$\sqrt{2}$-8 | D. | 2$\sqrt{2}$-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 25 | C. | 100 | D. | 400 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | i≤2015? | B. | i≤2016? | C. | i≤2017? | D. | i≤2018? |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2017屆湖南衡陽縣四中高三9月月考數(shù)學(xué)(文)試卷(解析版) 題型:解答題
在直角坐標(biāo)系中,以原點為極點,以軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程并指出其形狀;
(2)設(shè)是曲線上的動點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com