7.$sin\frac{2017}{4}π$等于( 。
A.1B.-1C.$\frac{{\sqrt{2}}}{2}$D.$-\frac{{\sqrt{2}}}{2}$

分析 由題意利用誘導(dǎo)公式,求得要求式子的值.

解答 解:sin$\frac{2017π}{4}$=sin(504π+$\frac{π}{4}$)=sin$\frac{π}{4}$=$\frac{\sqrt{2}}{2}$,
故選:C.

點(diǎn)評 本題主要考查誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(2k,3),且$\overrightarrow{a}$⊥(2$\overrightarrow{a}$+$\overrightarrow$),則實(shí)數(shù)k的值為( 。
A.-8B.-2C.1.5D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知雙曲線的中心在原點(diǎn),左、右焦點(diǎn)F1、F2在坐標(biāo)軸上,離心率為$\sqrt{2}$,且過點(diǎn)$({4,-\sqrt{10}})$,點(diǎn)M(3,m)在雙曲線上,
(1)求雙曲線的方程;
(2)求證:$\overrightarrow{{F_1}M}•\overrightarrow{{F_2}M}=0$;
(3)求△F1MF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知an=$\frac{n(1-b)+3b-2}{{{b^{n-1}}}}$(b>1,n≥2),若對不小于4的自然數(shù)n,恒有不等式an+1>an成立,則實(shí)數(shù)b的取值范圍是(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知等比數(shù)列{an}的公比q>1,a1與a4的等比中項(xiàng)是4$\sqrt{2}$,a2和a3的等差中項(xiàng)為6,數(shù)列{bn}滿足bn=log2an
(1)求{an}的通項(xiàng)公式;
(2)求{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn=2an+n(n∈N*).
(1)求證數(shù)列{an-1}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=log2(-an+1),求數(shù)列{$\frac{1}{_{n}_{n+2}}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.六個(gè)人排成一排,甲、乙兩人之間至少有一個(gè)人的排法種數(shù)為(  )
A.600B.480C.360D.240

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知集合M={(x,y)|$\left\{\begin{array}{l}{y≥-x-2}\\{x-2y+a≤0}\end{array}\right.$}和集合N={(x,y)|y=sinx,x≥0},若M∩N≠∅,則實(shí)數(shù)a的最大值為$\sqrt{3}$-$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知點(diǎn)P(x,y)在不等式組$\left\{\begin{array}{l}{x-y+1<0,}&{\;}\\{2x-y-2>0,}&{\;}\\{3x-2y+4>0}&{\;}\\{\;}&{\;}\end{array}\right.$所表示的平面區(qū)域內(nèi)運(yùn)動(dòng),則$\frac{y}{x}$的取值范圍為(1,$\frac{7}{4}$).

查看答案和解析>>

同步練習(xí)冊答案