9.若函數(shù)f(x)=lnx-ax在區(qū)間(1,+∞)上是單調(diào)減函數(shù),則a的取值范圍是$\underline{[{1,+∞})}$.

分析 求導(dǎo)數(shù),利用函數(shù)f(x)在區(qū)間(1,+∞)上遞減,可得f′(x)=$\frac{1}{x}$-a≤0在區(qū)間(1,+∞)上恒成立,即可求出實數(shù)a的取值范圍.

解答 解:∵f(x)=lnx-ax(a∈R),
∴f′(x)=$\frac{1}{x}$-a,
∵函數(shù)f(x)在區(qū)間(1,+∞)上遞減,
∴f′(x)=$\frac{1}{x}$-a≤0在區(qū)間(1,+∞)上恒成立,即a$≥\frac{1}{x}$,
而y=$\frac{1}{x}$在區(qū)間(1,+∞)上是單調(diào)減函數(shù),
∴a≥1,
故答案為:[1,+∞).

點評 利用導(dǎo)數(shù)可以解決函數(shù)的單調(diào)性問題,本題解題的關(guān)鍵是轉(zhuǎn)化為f′(x)=$\frac{1}{x}$-a≤0在區(qū)間(1,+∞)上恒成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知二次方程x2+x-1=0的兩根為α,β,求值:
(1)α33;    
(2)α22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列程序的功能是( 。
S=1
i=1
WHILE S<=2012
i=i+2
S=S×i
WEND
PRINT i
END.
A.計算1+3+5+…+2012
B.計算1×3×5×…×2012
C.求方程1×3×5×…×i=2012中的i值
D.求滿足1×3×5×…×i>2012的最小整數(shù)i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知復(fù)數(shù)z=3+4i,它的共軛復(fù)數(shù)記為$\overline z$,則|z•($\overline z$+1)|=20$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.求函數(shù)y=$\frac{{{x^4}+2{x^2}+5}}{{{x^2}+1}}$的最小值5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)y=f(x-1)是奇函數(shù),且f (2)=1,則f (-4)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.把正整數(shù)1,2,3,4,5,6,…按某種規(guī)律填入如表:
261014
145891213
371115
按這種規(guī)律連續(xù)填寫,2015出現(xiàn)在第3行,第1511 列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.解不等式loga(2x-5)>loga(x-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在以點O為圓心,1為半徑的半圓弧上任取一點B,如圖,則△AOB的面積大于<“m“:math xmlns:dsi='http://www.dessci.com/uri/2003/MathML'dsi:zoomscale='150'dsi:_mathzoomed='1'style='CURSOR:pointer; DISPLAY:inline-block'>14$\frac{1}{4}$的概率為(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

同步練習(xí)冊答案