某中學(xué)為了解高三女生的身高狀況,隨機(jī)抽取了100名女生.按身高分組得到頻率分布表為:
 組號(hào) 分組 頻數(shù) 頻率
 A組[150,155) 5 0.050
 B組 
[155,160)
 m 0.350
 C組 
[160,165)
 30 n
 D組 
[165,170)
 x 0.200
 E組 
[170,175)
 10 0.100
(Ⅰ)求表中的m,n,x的值,并畫(huà)出頻率分布直方圖;
(Ⅱ)由于該校要組成女子籃球隊(duì),決定在C、D、E組中用分層抽樣方法抽取6人,求各組抽取的人數(shù);
(Ⅲ)在(Ⅱ)中被抽取的6人中,隨機(jī)抽取2名隊(duì)員,求C組中選中人數(shù)ξ的分布列和數(shù)學(xué)期望.
考點(diǎn):離散型隨機(jī)變量的期望與方差,頻率分布直方圖,離散型隨機(jī)變量及其分布列
專(zhuān)題:概率與統(tǒng)計(jì)
分析:(Ⅰ)根據(jù)頻率=
頻數(shù)
樣本容量
,計(jì)算即可,并繪制直方圖,
(Ⅱ)根據(jù)分層抽樣的原則,由已知條件能分別求出各組抽取的人數(shù);
(Ⅲ)由已知得C組中選中人數(shù)ξ的可能取值為0,1,2,分別求出相應(yīng)的概率,由此能求出ξ的分布列和數(shù)學(xué)期望.
解答: 解:(Ⅰ)m=100×0.35=35,
n=
30
100
=0.3,x=100×0.2=20,
頻率分布直方圖如右圖所示:
(Ⅱ)∵C、D、E組三組共60人,利用分層抽樣的方法抽取6人,
則C組應(yīng)抽取人數(shù)為:
30
60
×6=3人,
D組應(yīng)抽取人數(shù)為:
20
60
×6
=2人,
E組應(yīng)抽取人數(shù)為:
10
60
×6=1人.
(Ⅲ)由已知得C組中選中人數(shù)ξ的可能取值為0,1,2,
P(ξ=0)=
C
0
3
C
2
3
C
2
6
=
1
5
,
P(ξ=1)=
C
1
3
C
1
3
C
2
6
=
3
5
,
P(ξ=2)=
C
2
3
C
0
3
C
2
6
=
1
5
,
∴ξ的分布列為:
 ξ 0 2
P 
1
5
 
3
5
 
1
5
Eξ=
1
5
+1×
3
5
+2×
1
5
=1.
點(diǎn)評(píng):本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,考查了頻率分布直方圖,以及古典概型概率的問(wèn)題,是中檔題,解題時(shí)要認(rèn)真審題,在歷年高考中都是必考題型之一.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校為了響應(yīng)《中共中央國(guó)務(wù)院關(guān)于加強(qiáng)青少年體育增強(qiáng)青少年體質(zhì)的意見(jiàn)》精神,落實(shí)“生命-和諧”教育理念和陽(yáng)光體育行動(dòng)的現(xiàn)代健康理念,學(xué)校特組織“踢毽球”大賽,某班為了選出一人參加比賽,對(duì)班上甲乙兩位同學(xué)進(jìn)行了8次測(cè)試,且每次測(cè)試之間是相互獨(dú)立.成績(jī)?nèi)缦拢海▎挝唬簜(gè)/分鐘)
8081937288758384
8293708477877885
(1)用莖葉圖表示這兩組數(shù)據(jù)
(2)從統(tǒng)計(jì)學(xué)的角度考慮,你認(rèn)為選派那位學(xué)生參加比賽合適,請(qǐng)說(shuō)明理由?
(3)若將頻率視為概率,對(duì)甲同學(xué)在今后的三次比賽成績(jī)進(jìn)行預(yù)測(cè),記這三次成績(jī)高于79個(gè)/分鐘的次數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望Eξ.
(參考數(shù)據(jù):22+12+112+102+62+72+12+22=316,02+112+122+22+52+52+42+32=344)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}是等差數(shù)列,若a1+1,a3+2,a5+3構(gòu)成公比為q的等比數(shù)列,則q=( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在下列四個(gè)命題中
(1)命題“若p,則q”與命題“若?q,則?p”互為逆否命題;
(2)y=f(x),x∈R,滿足f(x+2)=-f(x),則該函數(shù)是 周期為4的周期函數(shù);
(3)命題p:?x∈[0,1],ex≥1,命題q:?x∈R,x2+x+1<0,則p∨q為真;
(4)若實(shí)數(shù)x,y∈[0,1],則滿足x2+y2>1的概率為
π
4

其中錯(cuò)誤的個(gè)數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log 
1
2
(x2-2ax+3).
(1)若函數(shù)f(x)的定義域?yàn)镽,值域?yàn)椋?∞,-1],求實(shí)數(shù)a的值;
(2)若函數(shù)f(x)在(-∞,1]上為增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足an+1+an=n,若a1=1,則a8-a4=(  )
A、-1B、1C、2D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

現(xiàn)有6名學(xué)生,按下列要求回答問(wèn)題(列出算式,并計(jì)算出結(jié)果):
(Ⅰ)6人站成一排,甲站在乙的前面(甲、乙可以不相鄰)的不同站法種數(shù);
(Ⅱ)6人站成一排,甲、乙相鄰,且丙與乙不相鄰的不同站法種數(shù);
(Ⅲ)把這6名學(xué)生全部分到4個(gè)不同的班級(jí),每個(gè)班級(jí)至少1人的不同分配方法種數(shù);
(Ⅳ)6人站成一排,求在甲、乙相鄰條件下,丙、丁不相鄰的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a=sin(-
54π
7
),b=cos(-
19π
8
),c=tan(-
17π
5
),則a,b,c的大小關(guān)系是( 。
A、a>c>b
B、a>b>c
C、c>b>a
D、b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

寫(xiě)出命題“若m>0,則方程x2+x-m=0有實(shí)數(shù)根”的逆命題,判斷其真假,并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案