分析 先求出f(-2)=($\frac{1}{2}$)-2=4,從而f[f(-2)]=f(4)=log24,由此能求出f[f(-2)];由f(a)<0,得:當(dāng)a>0時(shí),f(a)=($\frac{1}{2}$)a<0;當(dāng)a<0時(shí),f(a)=log2a<0.由此能求出a的取值范圍.
解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,
∴f(-2)=($\frac{1}{2}$)-2=4,
f[f(-2)]=f(4)=log24=2;
∵f(a)<0,
∴當(dāng)a>0時(shí),f(a)=($\frac{1}{2}$)a<0,無(wú)解;
當(dāng)a<0時(shí),f(a)=log2a<0,解得0<a<1.
∴a的取值范圍是(0,1).
故答案為:2;(0,1).
點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 29 | B. | 30 | C. | 31 | D. | 32 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{5\sqrt{30}}{6}$ | B. | $\frac{5\sqrt{30}}{4}$ | C. | $\frac{5\sqrt{30}}{2}$ | D. | $\frac{5\sqrt{15}}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $f(x)=\sqrt{2}sin(x+\frac{π}{3})$ | B. | $f(x)=\sqrt{2}sin(x-\frac{π}{3})$ | C. | $f(x)=\sqrt{2}sin(2x+\frac{π}{3})$ | D. | $f(x)=\sqrt{2}sin(2x-\frac{π}{3})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | 9 | C. | 36 | D. | 72 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{2\sqrt{13}}}{13}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | $\frac{{\sqrt{7}}}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | 不確定 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com