設(shè)拋物線(xiàn)的焦點(diǎn)為,點(diǎn),線(xiàn)段的中點(diǎn)在拋物線(xiàn)上.設(shè)動(dòng)直線(xiàn)與拋物線(xiàn)相切于點(diǎn),且與拋物線(xiàn)的準(zhǔn)線(xiàn)相交于點(diǎn),以為直徑的圓記為圓
(1)求的值;
(2)試判斷圓軸的位置關(guān)系;
(3)在坐標(biāo)平面上是否存在定點(diǎn),使得圓恒過(guò)點(diǎn)?若存在,求出的坐標(biāo);若不存在,說(shuō)明理由.

(1)   (2)見(jiàn)解析    (3)存在

解析試題分析:
(1)判斷拋物線(xiàn)的焦點(diǎn)位置,得到焦點(diǎn)坐標(biāo),利用中點(diǎn)坐標(biāo)公式得到FA的中點(diǎn)坐標(biāo)帶入拋物線(xiàn)即可求的P的值.
(2)直線(xiàn)與拋物線(xiàn)相切,聯(lián)立直線(xiàn)與拋物線(xiàn),判別式為0即可得到k,m之間的關(guān)系,可以用k來(lái)替代m,得到P點(diǎn)的坐標(biāo),拋物線(xiàn)準(zhǔn)線(xiàn)與直線(xiàn)的方程可得到Q點(diǎn)的坐標(biāo),利用中點(diǎn)坐標(biāo)公式可得到PQ中點(diǎn)坐標(biāo),通過(guò)討論k的取值范圍得到中點(diǎn)到x軸距離與圓半徑(PQ為直徑)的大小比較即可判斷圓與x軸的位置關(guān)系.
(3)由(2)可以得到PQ的坐標(biāo)(用k表示),根據(jù)拋物線(xiàn)對(duì)稱(chēng)性知點(diǎn)軸上,設(shè)點(diǎn)坐標(biāo)為,則M點(diǎn)需滿(mǎn)足,即向量?jī)?nèi)積為0,即可得到M點(diǎn)的坐標(biāo),M點(diǎn)的坐標(biāo)如果為常數(shù)(不含k),即存在這樣的定點(diǎn),如若不然,則不存在.
試題解析:
解:(1)利用拋物線(xiàn)的定義得,故線(xiàn)段的中點(diǎn)的坐標(biāo)為,代入方程得,解得。                                2分
(2)由(1)得拋物線(xiàn)的方程為,從而拋物線(xiàn)的準(zhǔn)線(xiàn)方程為        3分
得方程,
由直線(xiàn)與拋物線(xiàn)相切,得                 4分
,從而,即,                   5分
,解得,                     6分
的中點(diǎn)的坐標(biāo)為
圓心軸距離,
 

                  8分
,
∴當(dāng)時(shí),,圓軸相切;
當(dāng)時(shí),,圓軸相交;        9分
(或,以線(xiàn)段為直徑圓的方程為:
 
∴當(dāng)時(shí),,圓軸相切;
當(dāng)時(shí),,圓軸相交;        9分
(3)方法一:假設(shè)平面內(nèi)存在定點(diǎn)滿(mǎn)足條件,由拋物線(xiàn)對(duì)稱(chēng)性知點(diǎn)軸上,設(shè)點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知?jiǎng)狱c(diǎn)M(x,y)到直線(xiàn)l:x=4的距離是它到點(diǎn)N(1,0)的距離的2倍.
(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)過(guò)點(diǎn)P(0,3)的直線(xiàn)m與軌跡C交于A(yíng),B兩點(diǎn),若A是PB的中點(diǎn),求直線(xiàn)m的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓+=1(a>b>0),點(diǎn)P(a,a)在橢圓上.
(1)求橢圓的離心率;
(2)設(shè)A為橢圓的左頂點(diǎn),O為坐標(biāo)原點(diǎn),若點(diǎn)Q在橢圓上且滿(mǎn)足|AQ|=|AO|,求直線(xiàn)OQ的斜率的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

我們把離心率為e=的雙曲線(xiàn)(a>0,b>0)稱(chēng)為黃金雙曲線(xiàn).如圖,是雙曲線(xiàn)的實(shí)軸頂點(diǎn),是虛軸的頂點(diǎn),是左右焦點(diǎn),在雙曲線(xiàn)上且過(guò)右焦點(diǎn),并且軸,給出以下幾個(gè)說(shuō)法:

①雙曲線(xiàn)x2-=1是黃金雙曲線(xiàn);
②若b2=ac,則該雙曲線(xiàn)是黃金雙曲線(xiàn);
③如圖,若∠F1B1A2=90°,則該雙曲線(xiàn)是黃金雙曲線(xiàn);
④如圖,若∠MON=90°,則該雙曲線(xiàn)是黃金雙曲線(xiàn).
其中正確的是(  )

A.①②④B.①②③C.②③④D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,橢圓過(guò)點(diǎn)P(1, ),其左、右焦點(diǎn)分別為F1,F2,離心率e=, M, N是直線(xiàn)x=4上的兩個(gè)動(dòng)點(diǎn),且·=0.

(1)求橢圓的方程;
(2)求MN的最小值;
(3)以MN為直徑的圓C是否過(guò)定點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C的對(duì)稱(chēng)中心為原點(diǎn)O,焦點(diǎn)在x軸上,左右焦點(diǎn)分別為,且||=2,
點(diǎn)(1,)在該橢圓上.
(1)求橢圓C的方程;
(2)過(guò)的直線(xiàn)與橢圓C相交于A(yíng),B兩點(diǎn),若AB的面積為,求以為圓心且與直線(xiàn)相切圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)點(diǎn)P是圓x2y2=4上任意一點(diǎn),由點(diǎn)Px軸作垂線(xiàn)PP0,垂足為P0,且.
(1)求點(diǎn)M的軌跡C的方程;
(2)設(shè)直線(xiàn)lykxm(m≠0)與(1)中的軌跡C交于不同的兩點(diǎn)A,B.
若直線(xiàn)OAAB,OB的斜率成等比數(shù)列,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C=1(ab>0)的離心率為,其左、右焦點(diǎn)分別是F1、F2,過(guò)點(diǎn)F1的直線(xiàn)l交橢圓CE、G兩點(diǎn),且△EGF2的周長(zhǎng)為4.
(1)求橢圓C的方程;
(2)若過(guò)點(diǎn)M(2,0)的直線(xiàn)與橢圓C相交于兩點(diǎn)AB,設(shè)P為橢圓上一點(diǎn),且滿(mǎn)足t (O為坐標(biāo)原點(diǎn)),當(dāng)||<時(shí),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知△OFQ的面積為S,且·=1.設(shè)||=c(c≥2),S=c.若以O(shè)為中心,F(xiàn)為一個(gè)焦點(diǎn)的橢圓經(jīng)過(guò)點(diǎn)Q,當(dāng)||取最小值時(shí),求橢圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案