18.設隨機變量X的分布列為P(X=$\frac{k}{5}$)=ak,(k=1,2,3,4,5)
(1)求a;
(2)求P(X≥$\frac{3}{5}$);
(3)P($\frac{1}{10}<X≤\frac{7}{10}$).

分析 (1)由隨機變量X的分布列的性質能求出a的值.
(2)由對立事件概率計算公式能求出P(X≥$\frac{3}{5}$)的值.
(3)由互斥事件概率加法公式能求出P($\frac{1}{10}<X≤\frac{7}{10}$).

解答 解:(1)∵隨機變量X的分布列為P(X=$\frac{k}{5}$)=ak,(k=1,2,3,4,5)
∴P(X=$\frac{1}{5}$)+P(X=$\frac{2}{5}$)+P(X=$\frac{3}{5}$)+P(X=$\frac{4}{5}$)+P(X=1)
=a+2a+3a+4a+5a=1,
解得a=$\frac{1}{15}$.
(2)P(X≥$\frac{3}{5}$)=1-P(X=$\frac{1}{5}$)-P(X-$\frac{2}{5}$)
=1-$\frac{1}{15}-\frac{2}{15}$
=$\frac{4}{5}$.
(3)P($\frac{1}{10}<X≤\frac{7}{10}$)=P(X=$\frac{1}{5}$)+P(X=$\frac{2}{5}$)+P(X=$\frac{3}{5}$)=$\frac{2}{5}$.

點評 本題考查概率的求法,是基礎題,解題時要認真審題,注意隨機變量X的分布列的性質、對立事件概率計算公式、互斥事件概率加法公式的性質的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.定義在R上的函數(shù)f(x)滿足f(x-1)的對稱軸為x=1,$f({x-1})=\frac{4}{f(x)}$(f(x)≠0),且在區(qū)間(-1,0)上單調遞減.已知α,β是鈍角三角形中兩銳角,則f(sinα)和f(cosβ)的大小關系是( 。
A.f(sinα)>f(cosβ)B.f(sinα)<f(cosβ)
C.f(sinα)=f(cosβ)D.以上情況均有可能

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=ax-lnx.
(1)求f(x)的單調區(qū)間;
(2)若方程f(x)=0恰有兩解,求實數(shù)a取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.閱讀如圖所示的程序框圖,若輸入P=2013,則輸出的S是$\frac{2013}{2014}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知函數(shù)f(x)=x3+bx2+cx+d在區(qū)間[-1,2]上是減函數(shù),則(  )
A.2b+c有最大值9B.2b+c有最小值9C.2b+c有最大值-9D.2b+c有最小值-9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.定義:min{a,b}=$\left\{\begin{array}{l}{a,a≤b}\\{b,a>b}\end{array}\right.$.在區(qū)域$\left\{\begin{array}{l}{0≤x≤2}\\{0≤y≤6}\end{array}\right.$內任取一點P(x,y),則x,y滿足min{3x-2y+6,x-y+4}=x-y+4的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知x=2+i,設M=1-${C}_{4}^{1}$x+${C}_{4}^{2}$x2-${C}_{4}^{3}$x3+${C}_{4}^{4}$x4,則M的值為-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知α,β是兩個不同的平面,m.n是兩條不同的直線,則下列命題中正確的是( 。
A.若m∥n,m?β,則n∥βB.若m∥α,α∩β=n,則m∥n
C.若m⊥α,m⊥β,則α∥βD.若m⊥β,α⊥β,則m∥α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.將函數(shù)y=1+sin(2x+$\frac{π}{4}$)的圖象向下平移1個單位,再向右平移$\frac{π}{8}$個單位,所得到的函數(shù)解析式是( 。
A.y=sin(2x+$\frac{π}{8}$)B.y=sin(2x+$\frac{3π}{8}$)C.y=cos2xD.y=sin2x

查看答案和解析>>

同步練習冊答案