2.在△ABC中,A,B為銳角,且cos 2A=$\frac{3}{5}$,sin B=$\frac{\sqrt{10}}{10}$,求角C的大小.

分析 根據(jù)同角的三角函數(shù)的關系以及兩角和的余弦公式即可求出.

解答 解:在△ABC中,∵A為銳角,cos 2A=$\frac{3}{5}$,
∴cos2A=1-2sin2A=$\frac{3}{5}$,
∴sinA=$\frac{\sqrt{5}}{5}$,cosA=$\sqrt{1-si{n}^{2}A}$=$\frac{2\sqrt{5}}{5}$.
又B為銳角,sin B=$\frac{\sqrt{10}}{10}$,
∴cosB=$\sqrt{1-si{n}^{2}B}$=$\frac{3\sqrt{10}}{10}$,
∴cos(A+B)=cosAcosB-sinAsinB=$\frac{2\sqrt{5}}{5}$×$\frac{3\sqrt{10}}{10}$-$\frac{\sqrt{5}}{5}$×$\frac{\sqrt{10}}{10}$=$\frac{\sqrt{2}}{2}$,
∵0<A+B<π,
∴A+B=$\frac{π}{4}$,
∴C=π-(A+B)=$\frac{3π}{4}$.

點評 本題考查了同角的三角函數(shù)的關系和兩角和的余弦公式,考查了學生的運算能力,屬于基礎題

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

16.若點P對應的復數(shù)z滿足|z|≤1,則P的軌跡是( 。
A.直線B.線段C.D.單位圓以及圓內

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知橢圓C的中心在坐標原點,焦點坐標為(2,0),短軸長為4$\sqrt{3}$.
(1)求橢圓C的標準方程及離心率;
(2)設P是橢圓C上一點,且點P與橢圓C的兩個焦點F1、F2構成一個以∠PF2F1為直角的直角三角形,求$\frac{|P{F}_{1}|}{|P{F}_{2}|}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,四棱錐P-ABCD中,BC∥AD,BC=1,AD=3,AC⊥CD,且平面PCD⊥平面ABCD.
(1)求證:AC⊥PD;
(2)在線段PA上是否存在點E,使BE∥平面PCD?若存在,確定點E的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知等腰直角三角形BCD中,斜邊BD長為2$\sqrt{2}$,E為邊CD上的點,F(xiàn)為邊BC上的點,且滿足:$\overrightarrow{DE}=λ\overrightarrow{DC}$,$\overrightarrow{BF}=\frac{1}{3λ}\overrightarrow{BC}$,若$\overrightarrow{BE}•\overrightarrow{DF}$=$-\frac{10}{3}$,則實數(shù)λ=$\frac{1}{2}$或$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.設A={(x,y)|x2-a(2x+y)+4a2=0},B={(x,y)||y|≥b|x|},對任意實數(shù)a,均有A⊆B成立,則實數(shù)b的最大值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知數(shù)列{an}的前n項和為Sn,且$\left\{{\frac{S_n}{n+1}}\right\}$是首項和公差均為$\frac{1}{2}$的等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若${b_n}=\frac{{{a_{n+1}}^2+{a_{n+2}}^2}}{{{a_{n+1}}•{a_{n+2}}}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知f(x)=|x-a|是(1,+∞)上的單調遞增函數(shù),則實數(shù)a的取值范圍是(-∞,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.圓x2+y2+4x-2y+$\frac{24}{5}$=0上的點到直線3x+4y=0的距離的最大值是(  )
A.$\frac{3}{5}$B.$\frac{1}{5}$C.$\frac{2+\sqrt{5}}{5}$D.$\frac{2-\sqrt{5}}{5}$

查看答案和解析>>

同步練習冊答案