8.已知數(shù)列{an}滿足:an=n•3n(n∈N*),則此數(shù)列前n項(xiàng)和為Sn=$\frac{2n-1}{4}$•3n+1+$\frac{3}{4}$.

分析 利用“錯(cuò)位相減法”與等比數(shù)列的前n項(xiàng)和公式即可得出.

解答 解:∵an=n•3n,
則此數(shù)列的前n項(xiàng)和Sn=3+2×32+3×33+…+n•3n,
∴3Sn=32+2×33+…+(n-1)•3n+n•3n+1,
∴-2Sn=3+32+33+…+3n-n•3n+1=$\frac{3(1-{3}^{n})}{1-3}$-n•3n+1=($\frac{1}{2}$-n)3n+1-$\frac{3}{2}$,
∴Sn=$\frac{2n-1}{4}$•3n+1+$\frac{3}{4}$.
故答案為:$\frac{2n-1}{4}$•3n+1+$\frac{3}{4}$.

點(diǎn)評(píng) 本題考查了“錯(cuò)位相減法”與等比數(shù)列的前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知一個(gè)扇形的周長(zhǎng)是6cm,該扇形的中心角是1弧度,則該扇形的面積為( 。ヽm2
A.2B.4C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知復(fù)數(shù)z=(2m2-3m-2)+(3m2-4m-4)i其中m∈R.當(dāng)m為何值時(shí),z為:
(1)實(shí)數(shù);     
(2)虛數(shù);    
(3)純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.對(duì)任意復(fù)數(shù)ω1,ω2,定義ω121$\overline{{ω}_{2}}$,其中$\overline{{ω}_{2}}$是ω2的共軛復(fù)數(shù).
對(duì)任意復(fù)數(shù)z1,z2,z3,有如下三個(gè)命題:
①(z1+z2)*z3=(z1*z3)+(z2*z3); ②(z1*z2)*z3=z1*(z2*z3); ③z1*z2=z2*z1;.
則真命題的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.函數(shù)f(x)=x+ax2+blnx的圖象在點(diǎn)P(1,0)處的切線斜率為2.
(1)求a,b的值;
(2)證明:f(x)≤2x-2對(duì)任意正實(shí)數(shù)x恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.參數(shù)方程$\left\{{\begin{array}{l}{x={{cos}^2}θ}\\{y={{sin}^2}θ}\end{array}}\right.$(θ為參數(shù))表示的曲線是( 。
A.直線B.C.線段D.射線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.如圖所示,在三棱錐A-OBC中,OA,OB,OC兩兩垂直且長(zhǎng)度都為2,則這個(gè)三棱錐的體積為$\frac{4}{3}$;O到平面ABC的距離為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知直線m,n與平面α,β,下列四個(gè)命題為真命題的是(  )
A.若m∥α,n∥α,則m∥nB.若m⊥α,n⊥α,則m∥n
C.若m∥α,n∥α,β∥α,則m∥nD.若m∥n,m∥α,則n∥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.從全體3位正整數(shù)中任取一數(shù),則此數(shù)以2為底的對(duì)數(shù)也是正整數(shù)的概率為( 。
A.$\frac{1}{225}$B.$\frac{1}{300}$C.$\frac{1}{450}$D.以上全不對(duì)

查看答案和解析>>

同步練習(xí)冊(cè)答案