4.若命題“?x∈[1,5],使x2+ax+2>0”為真命題,則實(shí)數(shù)a的取值范圍為(  )
A.$(-\frac{27}{5},+∞)$B.(-3,+∞)C.$(-2\sqrt{2},+∞)$D.$(-3,-2\sqrt{2})$

分析 根據(jù)特稱命題的定義和性質(zhì),等價(jià)于“?x∈[1,5],使a>[-(x+$\frac{2}{x}$)]min,即可得到結(jié)論.

解答 解:“?x∈[1,5],使x2+ax+2>0”為真命題,則等價(jià)于“?x∈[1,5],使a>[-(x+$\frac{2}{x}$)]min,
x∈[1,5]時(shí),g(x)=x+$\frac{2}{x}$的值域?yàn)閇2$\sqrt{2}$,$\frac{27}{5}$],∴[-(x+$\frac{2}{x}$)]min=-$\frac{27}{5}$.
故選:A.

點(diǎn)評 本題主要考查特稱命題的應(yīng)用、分離參數(shù)法,注意存在性命題和任意性命題的區(qū)別,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.f(x)是集合A到集合B的一個(gè)函數(shù),其中,A={1,2,…,n},B={1,2,…,2n},n∈N*,則f(x)為單調(diào)遞增函數(shù)的個(gè)數(shù)是( 。
A.$A_{2n}^n$B.n2nC.(2n)nD.${C}_{2n}^{n}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.總體由編號為01,02,…,19,20的20個(gè)個(gè)體組成,利用下面的隨機(jī)數(shù)表選取6個(gè)個(gè)體,選取方法是從隨機(jī)數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個(gè)數(shù)字,則選出來的第6個(gè)個(gè)體的編號為(  )
78166572080263140702436911280598
32049234493582003623486969387481
A.11B.02C.05D.04

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.關(guān)于x的不等式${({\frac{1}{2}})^x}≤{({\frac{1}{2}})^{x+1}}+1$的解集是{x|x≥-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(x)是定義在實(shí)數(shù)集R上的不恒為零的偶函數(shù),且xf(x+1)=(x+1)f(x)對任意實(shí)數(shù)x恒成立,則$f[f(\frac{5}{2})]$的值是( 。
A.0B.$\frac{1}{2}$C.1D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=ax-lnx,F(xiàn)(x)=ex+ax,其中x>0.
(1)若a<0,f(x)和F(x)在區(qū)間(0,ln3)上具有相同的單調(diào)性,求實(shí)數(shù)a的取值范圍;
(2)設(shè)函數(shù)h(x)=x2-f(x)有兩個(gè)極值點(diǎn)x1、x2,且x1∈(0,$\frac{1}{2}$),求證:h(x1)-h(x2)>$\frac{3}{4}$-ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若定義運(yùn)算a*b為:a*b=$\left\{\begin{array}{l}{a,a≤b}\\{b,a>b}\end{array}\right.$,如1*2=1,則函數(shù)f(x)=2x*2-x的值域?yàn)椋ā 。?table class="qanwser">A.RB.(0,1]C.(0,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.雙曲線$\frac{x^2}{16}-\frac{y^2}{9}=1$的離心率為$\frac{5}{4}$,焦點(diǎn)到漸近線的距離為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.(1)將參數(shù)方程轉(zhuǎn)化為普通方程:$\left\{{\begin{array}{l}{x=sinθ+cosθ}\\{y=1+sin2θ}\end{array}}\right.({θ為參數(shù)})$
(2)求橢圓$\frac{x^2}{9}+\frac{y^2}{4}=1$的參數(shù)方程:
①設(shè)x=3cosφ,φ為參數(shù);
②設(shè)y=2t,t為參數(shù).

查看答案和解析>>

同步練習(xí)冊答案