已知一個(gè)四棱錐P-ABCD的三視圖(正視圖與側(cè)視圖為直角三角形,俯視圖是帶有一條對(duì)角形的正方形)如下,E是側(cè)棱PC上的動(dòng)點(diǎn).
(1)求四棱錐P-ABCD的體積;
(2)是否不論點(diǎn)E在何位置都有BD⊥AE,證明你的結(jié)論.
(1)由三視圖可知,PC⊥面ABCD,且PC=2,
底面ABCD是正方形,故體積Vp-ABCD=
1
3
×2×1×1=
2
3
;(6分)
(2)是,在任何位置都有BD⊥AE,理由如下:(8分)
連接AC,則AC⊥BD,PC⊥BD且PC交AC于C點(diǎn),故BD⊥面PAC,
因?yàn)镋是PC上的動(dòng)點(diǎn),所以AE在平面PAC內(nèi),所以BD⊥AE不論E在何位置都正確.(12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在邊長(zhǎng)為a的正方體ABCD-A1B1C1D1中,E,F(xiàn),G,H分別是CC1,C1D1,D1D,CD的中點(diǎn),N是BC的中點(diǎn),M在四邊形EFGH上及其內(nèi)部運(yùn)動(dòng),若MN平面A1BD,則點(diǎn)M軌跡的長(zhǎng)度是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,ABCD-A1B1C1D1為正方體,下面結(jié)論中正確的結(jié)論是______.(把你認(rèn)為正確的結(jié)論都填上)
①BD平面CB1D1;
②A(yíng)C1⊥平面CB1D1;
③過(guò)點(diǎn)A1與異面直線(xiàn)AD和CB1成90°角的直線(xiàn)有2條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知如圖所示,PA、PO分別是平面α的垂線(xiàn)、斜線(xiàn),AO是PO在平面α內(nèi)的射影,且直線(xiàn)a?α,a⊥PO.求證:a⊥AO.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,在四棱錐P-ABCD中,PD⊥平面ABCD,AD⊥CD,AD=CD,DB平分∠ADC,E為PC的中點(diǎn).求證:
(1)PA平面BDE;
(2)AC⊥平面PBD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖(1)在正方形SG1G2G3中,E、F分別是邊G1G2、G2G3的中點(diǎn),沿SE、SF及EF把這個(gè)正方形折成一個(gè)幾何體如圖(2),使G1,G2,G3三點(diǎn)重合于G,下面結(jié)論成立的是( 。
A.SG⊥平面EFGB.SD⊥平面EFGC.GF⊥平面SEFD.DG⊥平面SEF

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AA1=AD=a,AB=2a,E、F分別為C1D1、A1D1的中點(diǎn).
(Ⅰ)求證:DE⊥平面BCE;
(Ⅱ)求證:AF平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

△ABC所在平面外一點(diǎn)P,分別連接PA、PB、PC,則這四個(gè)三角形中直角三角形最多有( 。
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐S?ABCD中,底面ABCD是正方形,SA⊥面ABCD,且SA=AB,M、N分別為SB、SD中點(diǎn),求證:
(1)DB平面AMN.
(2)SC⊥平面AMN.

查看答案和解析>>

同步練習(xí)冊(cè)答案