已知如圖所示,PA、PO分別是平面α的垂線、斜線,AO是PO在平面α內(nèi)的射影,且直線a?α,a⊥PO.求證:a⊥AO.
因為PA、PO分別是平面α的垂線、斜線,
所以PA⊥α,PA⊥a.
又因為a⊥PO,且PO∩PA=P,
所以a⊥面PAO,又AO?面PAO,
所以a⊥AO.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在正方體ABCD-A1B1C1D1中,E為DD1的中點.求證:
(1)BD1平面EAC;
(2)平面EAC⊥平面AB1C.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設平面α平面β,A,C∈α,B,D∈β,直線AB與CD交于點S,且點S位于平面α,β之間,AS=8,BS=6,CS=12,則SD=______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在邊長為4的菱形ABCD中,∠DAB=60°.點E、F分別在邊CD、CB上,點E與點C、D不重合,EF⊥AC,EF∩AC=O.沿EF將△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.
(Ⅰ)求證:BD⊥平面POA;
(Ⅱ)記三棱錐P-ABD體積為V1,四棱錐P-BDEF體積為V2.求當PB取得最小值時的V1:V2值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在直角梯形ABCD中,∠ABC=∠BAD=90°,BE⊥平面ABCD,AB=BC=BE=2AD=2.
(Ⅰ)求異面直線DE與AC所成角的大;
(Ⅱ)在線段CE上是否存在點F,使平面BDF⊥平面ADE,若存在,確定點F的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖在四棱錐P-ABCD中,底面ABCD是∠DAB=60°,且邊長為a的菱形,側面PAD為正三角形,其所在平面垂直于底面ABCD.
(1)若G為AD邊的中點,求證:BG⊥平面PAD;
(2)求二面角A-BC-P的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知一個四棱錐P-ABCD的三視圖(正視圖與側視圖為直角三角形,俯視圖是帶有一條對角形的正方形)如下,E是側棱PC上的動點.
(1)求四棱錐P-ABCD的體積;
(2)是否不論點E在何位置都有BD⊥AE,證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐V-ABCD中底面ABCD是正方形,側面VAD是正三角形,平面VAD⊥底面ABCD
(1)證明:AB⊥平面VAD;
(2)求面VAD與面VDB所成的二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,BC是Rt△ABC的斜邊,AP⊥平面ABC,連接PB、PC,作PD⊥BC于D,連接AD,則圖中共有直角三角形______個.

查看答案和解析>>

同步練習冊答案