給出下列3個(gè)命題:①在平面內(nèi),若動(dòng)點(diǎn)M、兩點(diǎn)的距離之和等于2,則動(dòng)點(diǎn)M的軌跡是橢圓;②在平面內(nèi),給出點(diǎn)、,若動(dòng)點(diǎn)P滿足,則動(dòng)點(diǎn)P的軌跡是雙曲線;③在平面內(nèi),若動(dòng)點(diǎn)Q到點(diǎn)和到直線的距離相等,則動(dòng)點(diǎn)Q的軌跡是拋物線。其中正確的命題有(        )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
A
命題①中,,則點(diǎn)軌跡是線段,則命題①不正確;
命題②中,,則動(dòng)點(diǎn)的軌跡是雙曲線的右半支,命題②不正確;
命題③中,因?yàn)辄c(diǎn)在直線上,所以動(dòng)點(diǎn)的軌跡為與直線垂直且過(guò)點(diǎn)的直線,命題③不正確。
綜上可得,三個(gè)命題都不正確,故選A
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,討論方程所表示的圓錐曲線類(lèi)型,并求其焦點(diǎn)坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的左焦點(diǎn),若橢圓上存在一點(diǎn),滿足以橢圓短軸為直徑的圓與線段相切于線段的中點(diǎn)
(Ⅰ)求橢圓的方程;
(Ⅱ)已知兩點(diǎn)及橢圓:,過(guò)點(diǎn)作斜率為的直線交橢圓兩點(diǎn),設(shè)線段的中點(diǎn)為,連結(jié),試問(wèn)當(dāng)為何值時(shí),直線過(guò)橢圓的頂點(diǎn)?
(Ⅲ) 過(guò)坐標(biāo)原點(diǎn)的直線交橢圓:、兩點(diǎn),其中在第一象限,過(guò)軸的垂線,垂足為,連結(jié)并延長(zhǎng)交橢圓,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率為,短軸的一個(gè)端點(diǎn)到右焦點(diǎn)的距離為2,
(1)試求橢圓的方程;
(2)若斜率為的直線與橢圓交于、兩點(diǎn),點(diǎn)為橢圓上一點(diǎn),記直線的斜率為,直線的斜率為,試問(wèn):是否為定值?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,橢圓的中心在坐標(biāo)原點(diǎn),其中一個(gè)焦點(diǎn)為圓的圓心,右頂點(diǎn)是圓F與x軸的一個(gè)交點(diǎn).已知橢圓與直線相交于A、B兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)求面積的最大值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

直線y=x-被橢圓x2+4y2=4截得的弦長(zhǎng)為          。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線,焦點(diǎn)為,其準(zhǔn)線與軸交于點(diǎn);橢圓:分別以為左、右焦點(diǎn),其離心率;且拋物線和橢圓的一個(gè)交點(diǎn)記為
(1)當(dāng)時(shí),求橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,若直線經(jīng)過(guò)橢圓的右焦點(diǎn),且與拋物線相交于兩點(diǎn),若弦長(zhǎng)等于的周長(zhǎng),求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓,拋物線,點(diǎn)上的動(dòng)點(diǎn),過(guò)點(diǎn)作拋物線的切線,交橢圓兩點(diǎn),
(1)當(dāng)的斜率是時(shí),求;
(2)設(shè)拋物線的切線方程為,當(dāng)是銳角時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

.已知橢圓C:+=1(a>b>0)的長(zhǎng)軸長(zhǎng)為4.
(1)若以原點(diǎn)為圓心、橢圓短半軸為半徑的圓與直線yx+2相切,求橢圓C的焦點(diǎn)坐標(biāo);
(2)若點(diǎn)P是橢圓C上的任意一點(diǎn),過(guò)焦點(diǎn)的直線l與橢圓相交于MN兩點(diǎn),記直線PM,PN的斜率分別為kPMkPN,當(dāng)kPM·kPN=-時(shí),求橢圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案