8.方程(1+$\frac{1}{x}$)x+1=(1+$\frac{1}{2009}$)2009的整數(shù)解的個(gè)數(shù)是( 。
A.僅有一個(gè)B.0C.有限的(大于1個(gè))D.無窮多

分析 根據(jù)${(1+\frac{1}{x})}^{x+1}$=${(\frac{x+1}{x})}^{x+1}$=${(\frac{y+1}{y})}^{y}$,得到當(dāng)且僅當(dāng)y=2009時(shí),${(\frac{y+1}{y})}^{y}$=${(\frac{2010}{2009})}^{2009}$,從而求出x的值,得到答案.

解答 解:${(1+\frac{1}{x})}^{x+1}$=$\frac{{(x+1)}^{x+1}}{{x}^{x+1}}$,
${(1+\frac{1}{2009})}^{2009}$=$\frac{{2010}^{2009}}{{2009}^{2009}}$,
x>0,即x∈N*時(shí),
∵$\frac{x+1}{x}$,$\frac{2010}{2009}$都是既約分?jǐn)?shù),
∴對于任意正整數(shù),x,x+1≠20092009,
故原方程無解,
x=0或-1,顯然也不是方程的解,
當(dāng)x<-1時(shí),令y=-(x+1),
則${(1+\frac{1}{x})}^{x+1}$=${(\frac{x+1}{x})}^{x+1}$=${(\frac{y+1}{y})}^{y}$,
當(dāng)且僅當(dāng)y=2009時(shí),${(\frac{y+1}{y})}^{y}$=${(\frac{2010}{2009})}^{2009}$,
故原方程有唯一解x=-2010,
故選:A.

點(diǎn)評 本題考查了根的存在性問題,考查轉(zhuǎn)化思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.運(yùn)行如圖程序,則輸出的結(jié)果是( 。
A.9B.11C.17D.19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.$\frac{1+i}{{1+{i^3}}}$=i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知曲線C的極坐標(biāo)方程為ρ=2cosθ-4sinθ.以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+t}\\{y=-1+t}\end{array}\right.$(t為參數(shù)).
(1)判斷直線l與曲線C的位置關(guān)系,并說明理由;
(2)若直線l和曲線C相交于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知定義在R上的函數(shù)y=f(x)對于任意的x都滿足f(x+1)=-f(x),且當(dāng)0≤x<1時(shí),有f(x)=x,則函數(shù)g(x)=|lgx|-f(x)的零點(diǎn)個(gè)數(shù)為( 。
A.3B.5C.6D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知隨機(jī)變量X服從正態(tài)分布N(1,σ2),且P(0<X≤1)=0.4,則且P(X<0)=(  )
A.0.4B.0.1C.0.6D.0.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=|x2-x|-ax.
(1)當(dāng)a=$\frac{1}{3}$時(shí),求方程f(x)=0的根;
(2)當(dāng)a≤-1時(shí),求函數(shù)f(x)在[-2,3]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為$\frac{\sqrt{2}}{2}$.直線y=k(x-1)與橢圓C交于不同的兩點(diǎn)M,N.
(1)求橢圓C的方程;  
(2)當(dāng)△AMN的面積為$\frac{4\sqrt{7}}{9}$時(shí),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知D為△ABC的邊AB上的一點(diǎn),且$\overrightarrow{CD}$=$\frac{1}{3}$$\overrightarrow{AC}$+λ•$\overrightarrow{BC}$,則實(shí)數(shù)λ的值為( 。
A.$\frac{2}{3}$B.$-\frac{2}{3}$C.$\frac{4}{3}$D.$-\frac{4}{3}$

查看答案和解析>>

同步練習(xí)冊答案