在極坐標系中,曲線ρ=2coosθ與ρ=1交于A,B兩點,則|AB|=
 
考點:簡單曲線的極坐標方程
專題:坐標系和參數(shù)方程
分析:曲線ρ=2coosθ化為ρ2=2ρcosθ,可得x2+y2=2x,ρ=1化為x2+y2=1,聯(lián)立解得即可得出.
解答: 解:曲線ρ=2coosθ化為ρ2=2ρcosθ,∴x2+y2=2x,
ρ=1化為x2+y2=1,
聯(lián)立解得
x=
1
2
y=±
3
2

∴|AB|=
3

故答案為:
3
點評:本題考查了極坐標化為直角坐標方程、圓的公共弦長,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設a為實數(shù),函數(shù)f(x)=x3-x2-x+a,當a為何值時,方程f(x)=0有:
(1)兩個不同的實數(shù)根;
(2)三個不同的實數(shù)根.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

Monte-Carlo方法在解決數(shù)學問題中有廣泛的應用.下面是利用Monte-Carlo方法來計算定積分.考慮定積分
1
0
x4dx,這時
1
0
x4dx等于由曲線y=x4,x軸,x=1所圍成的區(qū)域M的面積,為求它的值,我們在M外作一個邊長為1正方形OABC.設想在正方形OABC內隨機投擲n個點,若n個點中有m個點落入M中,則M的面積的估計值為
m
n
,此即為定積分
1
0
x4dx的估計值I.向正方形ABCD中隨機投擲10000個點,有ξ個點落入?yún)^(qū)域M
(1)若ξ=2099,計算I的值,并以實際值比較誤差是否在5%以內
(2)求ξ的數(shù)學期望
(3)用以上方法求定積分,求I與實際值之差在區(qū)間(-0.01,0.01)的概率
附表:p(n)=
n
i=0
C
 
k
10000
×0.2k×0.810000-k
n189919001901209921002101
P(n)0.00580.00620.00670.99330.99380.9942

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c的零點是-1和3,當x∈(-1,3)時,f(x)<0,且f(4)=5.
(1)求該二次函數(shù)的解析式;
(2)求函數(shù)g(x)=(
1
2
f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=tan(x-
π
4
)的單調遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

分別從集合A、B中各任取一個元素m、n,即滿足m∈A,n∈B,記(m.n).
(Ⅰ)若集合A={0,1,2,3},B={0,1,2,3},寫出所有(m,n)的取值情況,并求事件“m>n”的概率;
(Ⅱ)若集A=[0,3],B=[0,3],求事件“方
x2
m+1
+
y2
n+1
=1
所對應的曲線表示焦點在x軸上的橢圓,且長軸長大于短軸長的
2
倍”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關于x的不等式kx2-2x+6k<0,(k>0)
(1)若不等式解集為∅,求實數(shù)k的取值范圍;
(2)若不等式的解集為集合{x|2<x<3}的子集,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)為偶函數(shù),其圖象上相鄰的兩個最低點間的距離為2π.
(Ⅰ)求f(x)的解析式;
(Ⅱ)將函數(shù)f(x)圖象向右平移
π
3
個單位得到函數(shù)g(x)的圖象,若α∈[0,π],且g(a)=
1
2
,求sin(
6
-α)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|(x-1)
1
3
|,若存在x1,x2∈[a,b],且x1<x2,使f(x1)≥f(x2)成立  則以下對實數(shù)a、b的描述正確的是( 。
A、a<1B、a≥1
C、b≤1D、b≥1

查看答案和解析>>

同步練習冊答案