9.已知奇函數(shù)f(x)定義在(-1,1)上,并在定義域上單調(diào)遞減,且滿足f(-a)+f(1-a2)<0,求a的取值范圍.

分析 由條件利用函數(shù)的單調(diào)性和奇偶性可得得$\left\{\begin{array}{l}{-1<1{-a}^{2}<1}\\{-1<a<1}\\{1{-a}^{2}>a}\end{array}\right.$,由此求得a的范圍.

解答 解:∵奇函數(shù)f(x)定義在(-1,1)上,并在定義域上單調(diào)遞減,
可得f(-a)+f(1-a2)<0,即 f(1-a2)<-f(-a)=f(a),
故有$\left\{\begin{array}{l}{-1<1{-a}^{2}<1}\\{-1<a<1}\\{1{-a}^{2}>a}\end{array}\right.$,求得-1<a<0,或 0<a<$\frac{-1+\sqrt{5}}{2}$,
即a的取值范圍為(-1,0)∪(0,$\frac{-1+\sqrt{5}}{2}$).

點評 本題主要考查函數(shù)的單調(diào)性和奇偶性的綜合應(yīng)用,解一元二次不等式組,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知關(guān)于x的方程x2+2mx+2m+1=0滿足下列條件時,m的取值范圍.
(1)方程的兩根都大于1;
(2)方程的兩根一個比1大,一個比1小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在等差數(shù)列{an}中,a1=1,d=2,依次抽取這個數(shù)列的第1,3,32,…,3n-1項組成數(shù)列{bn},求數(shù)列{bn}的通項及前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知f(3x+1)=x+4,則f(x+1)=$\frac{1}{3}x+4$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,D為BC邊的中點,且AB=6,AC=4,AD=$\sqrt{10}$,求BC邊的長及△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.一帆船要從A處駛向正東方向200海里的B處,當(dāng)時有自西北方向吹來的風(fēng),風(fēng)速為15$\sqrt{2}$海里/小時,如果帆船計劃在5小時內(nèi)到達(dá)目的地,則船速的大小應(yīng)為5$\sqrt{34}$海里/小時.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知向量$\overrightarrow{m}$=($\sqrt{3}$sinx,1-$\sqrt{2}$sinx),$\overrightarrow{n}$=(2cosx,1+$\sqrt{2}$sinx).
(1)若函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,當(dāng)x∈[0,$\frac{π}{2}$]時,求f(x)的值域;
(2)若△ABC的內(nèi)角A,B,C的對邊分別為a,b,c且滿足$\frac{a}$=$\sqrt{3}$,$\frac{sinBcosA}{sinA}$=2-cosB,求f(B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若a,b,c成等比數(shù)列,其中0<a<b<c,n是大于1的整數(shù),那么logan,logbn,logcn組成的數(shù)列是(  )
A.等比數(shù)列
B.等差數(shù)列
C.每項的倒數(shù)成等差數(shù)列
D.第二項與第三項分別是第一項與第二項的n次冪

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若等比數(shù)列{an}的前n項和為Sn,且Sn=1-2an,則數(shù)列{an}的公比是( 。
A.$\frac{2}{3}$B.$-\frac{2}{3}$C.$\frac{1}{3}$D.$-\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊答案