1.如圖所示,已知半圓的直徑AB=2,點(diǎn)C在AB的延長(zhǎng)線上,BC=1,點(diǎn)P為半圓上的一個(gè)動(dòng)點(diǎn),以DC為邊作等邊△PCD,且點(diǎn)D與圓心O分別在PC的兩側(cè),求四邊形OPDC面積的最大值.

分析 設(shè)∠POB=θ,將面積表示為角的函數(shù),再利用三角函數(shù)求最值的方法求最值.

解答 解:設(shè)∠POB=θ.在△POC中,由余弦定理得:PC2=OP2+OC2-2OP•OC•cosθ=5-4cosθ,
P(cosθ,sinθ),
所以S=S△OPC+S△PCD=$\frac{1}{2}×2×sinθ$+$\frac{\sqrt{3}}{4}(5-4cosθ)$=sin$θ-\sqrt{3}cosθ$$+\frac{5\sqrt{3}}{4}$=2sin(θ-$\frac{π}{3}$)+$\frac{5}{4}$$\sqrt{3}$,當(dāng)θ-$\frac{π}{3}$=$\frac{π}{2}$時(shí),即θ=$\frac{5}{6}$π時(shí),
四邊形OPDC面積的最大值為 2+$\frac{5}{4}\sqrt{3}$.

點(diǎn)評(píng) 本題通過引進(jìn)角,利用余弦定理求邊長(zhǎng),從而構(gòu)建函數(shù),再求函數(shù)的最值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在銳角三角形ABC中,c=asinB.則實(shí)數(shù)sinC的最大值是$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.經(jīng)過橢圓E:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的右焦點(diǎn)F作直線l,交橢圓E于A,B兩點(diǎn).如果F恰好是線段AB的三等分點(diǎn),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若$tanθ=\frac{3}{4}$,則tan2θ=$\frac{24}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知|$\overrightarrow{a}$|=5,向量$\overrightarrow{a}$與$\overrightarrow$的夾角θ=60°,則向量$\overrightarrow{a}$在$\overrightarrow$方向上的投影為$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=6-12x+x3
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求過點(diǎn)P(3,-3)并且與函數(shù)f(x)圖象相切的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)函數(shù)y=$\sqrt{x-1}$的定義域?yàn)镸,集合N={y|y=x2,x∈R},則M∩N=(  )
A.B.NC.(1,+∞)D.M

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知直線m,n和平面α,β,則下列四個(gè)命題中正確的是( 。
A.若α⊥β,m?β,則m⊥αB.若m⊥α,n∥α,則m⊥nC.若m∥α,n∥m,則n∥αD.若m∥α,m∥β,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=lnx-ax,g(x)=$\frac{1}{x}$+a.
(1)當(dāng)a=2 時(shí),求F(x)=f(x)-g(x)在(0,2]的最大值;
(2)討論函數(shù)F(x)=f(x)-g(x) 的單調(diào)性;
(3)若f(x)•g(x)≤0 在定義域內(nèi)恒成立,求實(shí)數(shù)a的取值集合.

查看答案和解析>>

同步練習(xí)冊(cè)答案