14.設(shè)集合A滿足:若a∈A,則$\frac{1}{1-a}$∈A,且1∉A.
(1)若2∈A,請求出A中一定含有的其他元素;
(2)求證:若a∈A,則1-$\frac{1}{a}$∈A.

分析 (1)2∈A,則$\frac{1}{1-2}$=-1∈A,依此類推即可得出.
(2)利用a∈A,則$\frac{1}{1-a}$∈A,且1∉A.即可得出.

解答 (1)解:∵2∈A,則$\frac{1}{1-2}$=-1∈A,
∴$\frac{1}{1-(-1)}$=$\frac{1}{2}$∈A,$\frac{1}{1-\frac{1}{2}}$=2∈A.
∴A中一定含有的其他元素是-1,$\frac{1}{2}$.
(2)證明:∵a∈A,則$\frac{1}{1-a}$∈A,且1∉A.
∴$\frac{1}{1-\frac{1}{1-a}}$=$\frac{1-a}{-a}$=1-$\frac{1}{a}$∈A.

點評 本題考查了集合的性質(zhì)、元素與集合之間的關(guān)系、代數(shù)式的化簡,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,ABCD是圓O的內(nèi)接四邊形,點C是$\widehat{BD}$的中點,切線CE交AD的延長線于E,AC交BD于F.
(Ⅰ)求證:∠AFD=∠CDE;
(Ⅱ)寫出比值與$\frac{AE}{CE}$相等的5組線段.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在直三棱柱ABC-A1B1C1中,D為AB的中點,點E,點F分別在BC和B1B上,且直線DE∥平面A1C1F,B1D⊥A1F,AC⊥AB.
(1)求BE:BC的值;
(2)求證:A1F⊥平面B1DE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,在四棱錐P-ABCD中,側(cè)面PAD為正三角形,底面ABCD是邊長為2的為正方形,側(cè)面PAD⊥底面ABCD,M為底面ABCD內(nèi)的一個動點,且滿足MP=MC,則點M在正方形ABCD內(nèi)的軌跡的長度為( 。
A.$\sqrt{5}$B.2$\sqrt{2}$C.πD.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.廈門日報訊,2016年5月1日上午,廈門海洋綜合行政執(zhí)法支隊在公務(wù)碼頭啟動了2016年休漁監(jiān)管執(zhí)法的首日行動,這標(biāo)志著廈門海域正式步入為期4個半月的休漁期.某小微企業(yè)決定囤積一些冰鮮產(chǎn)品,銷售所囤積魚品的凈利潤y萬元與投入x萬元之間近似滿足函數(shù)關(guān)系:
f(x)=$\left\{\begin{array}{l}{2{x}^{2}-(2ln2)•x,0<x<2}\\{alnx-\frac{1}{4}{x}^{2}+\frac{9}{2}x,2≤x≤15}\end{array}\right.$
若投入2萬元,可得到凈利潤為5.2萬元.
(1)試求該小微企業(yè)投入多少萬元時,獲得的凈利潤最大;
(2)請判斷該小微企業(yè)是否會虧本,若虧本,求出投入資金的范圍;若不虧本,請說明理由(參考數(shù)據(jù):ln2=0.7,ln15=2.7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=xex+ax2-2x,a∈R.
(1)當(dāng)a=-1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對x≥0時,恒有f′(x)-f(x)≥(4a+2)x-1成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知sinα是方程5x2-7x-6=0的根,α為第三象限的角,求$\frac{sin(-α-\frac{3}{2}π)•sin(\frac{3}{2}π-α)•ta{n}^{2}(2π-α)}{cos(\frac{π}{2}-α)•cos(\frac{π}{2}+α)•cot(π-α)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.正三棱柱ABC-A1B1C1的所有棱長都相等,D,E分別是AB,BB1的中點.
(Ⅰ)證明:BC1∥平面A1CD;
(Ⅱ)求二面角D-A1C-E的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.寫出下列圖形的極坐標(biāo)方程,且畫出圖象(已知點為極坐標(biāo)):
(1)過點(10,$\frac{π}{4}$)且平行于極軸的直線;
(2)過點(10,$\frac{π}{4}$)且垂直于極軸的直線;
(3)過點(1,0)和極軸夾角$\frac{π}{6}$的直線;
(4)圓心在(1,π)、半徑為1的圓.

查看答案和解析>>

同步練習(xí)冊答案