16.設(shè)A={(x,y)|y=x+1,x∈R},B={(x,y)|y=-2x+4,x∈R},則A∩B={(1,2)}.

分析 聯(lián)立方程組得$\left\{\begin{array}{l}{y=x+1}\\{y=-2x+4}\end{array}\right.$,解得即可.

解答 解:聯(lián)立方程組得$\left\{\begin{array}{l}{y=x+1}\\{y=-2x+4}\end{array}\right.$,解得x=1,y=2,
故A∩B={(1,2)},
故答案為:{(1,2)}

點評 本題考查集合的交集的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意方程組的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=x2-2ax+3在區(qū)間[2,3]上是單調(diào)函數(shù),則a的取值范圍是(-∞,2]∪[3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.計算
(1)$(0.027{)^{-\frac{1}{3}}}-(-\frac{1}{7}{)^{-2}}+(2\frac{7}{9}{)^{\frac{1}{2}}}-(\sqrt{2}-1{)^0}$
(2)log2$\frac{{\sqrt{7}}}{{\sqrt{48}}}+{log_2}12-\frac{1}{2}{log_2}42-{log_2}$2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}x^2,x≥0\\ ln(-x),x<0\end{array}$,則函數(shù)g(x)=f(x)-x的零點的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.利用定義證明函數(shù)$f(x)=\frac{3}{x}+1$在區(qū)間[3,6]上是單調(diào)減函數(shù),并求其值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{6}}{3}$,過焦點垂直于長軸的弦的弦長為$\frac{{2\sqrt{3}}}{3}$.
(1)求橢圓C的方程;
(2)設(shè)直線l與橢圓C交于A,B兩點,坐標(biāo)原點O到直線l的距離為$\frac{\sqrt{3}}{2}$,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.若數(shù)列…,a-2,a-1,a0,a1,a2,…滿足${a_n}=\frac{{{a_{n-1}}+{a_{n+1}}}}{3}({n∈Z})$,則稱{an}具有性質(zhì)A.
(Ⅰ)若數(shù)列{an}、{bn}具有性質(zhì)A,k為給定的整數(shù),c為給定的實數(shù).以下四個數(shù)列中哪些具有性質(zhì)A?請直接寫出結(jié)論.
①{-an};②{an+bn};③{an+k};④{can}.
(Ⅱ)若數(shù)列{an}具有性質(zhì)A,且滿足a0=0,a1=1.
(i)直接寫出a-n+an(n∈Z)的值;
(ii)判斷{an}的單調(diào)性,并證明你的結(jié)論.
(Ⅲ)若數(shù)列{an}具有性質(zhì)A,且滿足a-2004=a2015.求證:存在無窮多個整數(shù)對(l,m),滿足at=am(l≠m).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=x+$\frac{4}{x}$(其中x>0).
(Ⅰ)求證:f(x)在(0,2]上是減函數(shù),在[2,+∞)上是增函數(shù);
(Ⅱ)求函數(shù)f(x)在區(qū)間[2,4]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.當(dāng)x∈(0,5]時,函數(shù)f(x)=3x2-4x+c的值域為(  )
A.[f(0),f(5)]B.[f(0),f($\frac{2}{3}$)]C.[f($\frac{2}{3}$),f(5)]D.[c,f(5)]

查看答案和解析>>

同步練習(xí)冊答案