1.若曲線f(x)=x4-x在點(diǎn)P處的切線平行于直線3x-y=0,則點(diǎn)P的坐標(biāo)為( 。
A.(0,0)B.(1,0)C.(1,-3)D.(-1,2)

分析 設(shè)P(m,n),求出f(x)的導(dǎo)數(shù),可得切線的斜率,由兩直線平行的條件:斜率相等,解m的方程可得m,進(jìn)而得到切點(diǎn)P的坐標(biāo).

解答 解:f(x)=x4-x的導(dǎo)數(shù)為f′(x)=4x3-1,
設(shè)P(m,n),可得曲線在點(diǎn)P處的切線斜率為4m3-1,
由切線平行于直線3x-y=0,可得4m3-1=3,
解得m=1,n=m4-m=1-1=0.
即有P(1,0),
故選:B.

點(diǎn)評 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率,同時考查兩直線平行的條件:斜率相等,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.集合A={x|1≤x≤5},B={x|2≤x≤6},
(1)若x∈A,y∈B且均為整數(shù),求x>y的概率.
(2)若x∈A,y∈B且均為實(shí)數(shù),求x>y的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列四個數(shù)中,最大的是( 。
A.11011(2)B.103(4)C.44(5)D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某商場舉行抽獎活動,規(guī)則如下:甲箱子里裝有3個白球和2個黑球,乙箱子里裝有1個白球和3個黑球,這些球除顏色外完全相同;每次抽獎都從這兩個箱子里各隨機(jī)地摸出2個球,若摸出的白球個數(shù)不少于2個,則獲獎.(每次游戲結(jié)束后將球放回原箱)
(Ⅰ)在一次游戲中,求獲獎的概率;
(Ⅱ)在三次游戲中,記獲獎次數(shù)為隨機(jī)變量X,求X的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.sin40°cos10°+cos140°sin10°=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.曲線f(x)=x(3lnx+1)在x=1處的切線方程為y=4x-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),作直線l交橢圓于P,Q兩點(diǎn),M為線段PQ的中點(diǎn),O為坐標(biāo)原點(diǎn),設(shè)直線l的斜率為k1,直線OM的斜率為k2,k1k2=-$\frac{2}{3}$.則橢圓的離心率為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{1}{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}的通項(xiàng)公式an=2n-(-1)n,n∈N*.設(shè)an1,an2,…,ant(其中n1<n2<…<nt,t∈N*)成等差數(shù)列.
(1)若t=3.
①當(dāng)n1,n2,n3為連續(xù)正整數(shù)時,求n1的值;
②當(dāng)n1=1時,求證:n3-n2為定值;
(2)求t的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知cosα=$\frac{4}{5}$,α是第四象限角,則sin(2π-α)=(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.±$\frac{3}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

同步練習(xí)冊答案