【題目】已知m∈{11,13,15,17,19},n∈{2000,2001,…,2019},則mn的個位數(shù)是1的概率為____________ .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】足球比賽中,一隊在本方罰球區(qū)內(nèi)犯規(guī),會被判罰點球,點球是進攻方非常有效的得分手段.研究機構(gòu)對某位足球隊員的1000次點球訓(xùn)練進行了統(tǒng)計分析,以幫助球員提高點球的命中率.如圖,將球門框內(nèi)的區(qū)域分成9個區(qū)域(區(qū)域代碼為1—9,球門框外的區(qū)域記做區(qū)域0),統(tǒng)計球員射點球時射中10個區(qū)域次數(shù)和進球次數(shù)(即使射中球門框內(nèi),也可能被守門員撲出),得到如下的兩個頻率分布條形圖:
(其中射中率,得分率)
(1)根據(jù)上述頻率分布條形圖,求射中球門框內(nèi)時,各區(qū)域進球數(shù)的平均數(shù)(結(jié)果保留兩位小數(shù))和中位數(shù);
(2)以該隊員這1000次點球練習(xí)的進球頻率作為他在比賽中射點球時進球的概率,設(shè)他在三次射點球時進球數(shù)為,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中m為常數(shù),且是函數(shù)的極值點.
(Ⅰ)求m的值;
(Ⅰ)若在上恒成立,求實數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,橢圓的左頂點為,過點的直線與橢圓交于軸上方一點,以為邊作矩形,其中直線過原點.當點為橢圓的上頂點時,的面積為,且.
(1)求橢圓的標準方程;
(2)求矩形面積的最大值;
(3)矩形能否為正方形?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點的坐標為,點為橢圓上一點.
(1)求橢圓的方程;
(2)過橢圓的右焦點作斜率為的直線交橢圓于,兩點,且,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某連鎖超市旗艦店在元旦當天推出一個購物滿百元抽獎活動,凡是一次性購物滿百元者可以從抽獎箱中一次性任意摸出2個小球(抽獎箱內(nèi)共有5個小球,每個小球大小形狀完全相同,這5個小球上分別標有1,2,3,4,5 這5個數(shù)字).
(1)列出摸出的2個小球的所有可能的結(jié)果.
(2)已知該超市活動規(guī)定:摸出的2個小球都是偶數(shù)為一等獎;摸出的2個小球都是奇數(shù)為二等獎.請分別求獲得一等獎的概率與獲得二等獎的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,過的直線與拋物線C交于兩點,點A在第一象限,拋物線C在兩點處的切線相互垂直.
(1)求拋物線C的標準方程;
(2)若點P為拋物線C上異于的點,直線均不與軸平行,且直線AP和BP交拋物線C的準線分別于兩點,.
(i)求直線的斜率;
(ⅱ)求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線與橢圓交于不同的兩點,.
(1)若線段的中點為,求直線的方程;
(2)若的斜率為,且過橢圓的左焦點,的垂直平分線與軸交于點,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.回歸直線一定經(jīng)過樣本點的中心
B.若兩個具有線性相關(guān)關(guān)系的變量的相關(guān)性越強,則線性相關(guān)系數(shù)的值越接近于1
C.在殘差圖中,殘差點分布的水平帶狀區(qū)域越窄,說明模型的擬合精度越高
D.在線性回歸模型中,相關(guān)指數(shù)越接近于1,說明回歸模型的擬合效果越好
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com